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ABSTRACT. This paper examines spatial spillovers
associated with the adoption of organic dairy farm-
ing. We hypothesize that neighboring farmers can
help to reduce the uncertainty of organic conversion
by lowering the fixed costs of learning about the or-
ganic system. A spatially explicit 10-year panel da-
taset of more than 1,900 dairy farms in southwestern
Wisconsin is used as input into a reduced-form econo-
metric model of the decision to convert to organic
production. Using an identification strategy that ex-
ploits the panel aspect of the micro dataset, we find
evidence that the presence of neighboring organic
dairy farms affects the conversion decision. (JEL
Q15, Q24)

I. INTRODUCTION

Modeling and identifying explicit and im-
plicit land-use coordination behavior has be-
come a popular topic among public finance,
urban, and resource economists. Examples in-
clude how amenities, neighboring land uses,
and other local attributes affect housing
choices (Irwin and Bockstael 2002; Wu and
Plantinga 2003; Walsh 2007), how zoning
laws and open-space conservation shape ex-
urban and lakefront development (Newburn
and Berck 2006; Lewis, Provencher, and But-
sic 2009), and how conservation and land-use
policies drive distinctive patterns of ecosys-
tem service provision (Nelson et al. 2008;
Lewis 2010). At the heart of these models is
an effort to identify clustered behavior driven
by sorting, spatial externalities, path depen-
dence, and other types of economically mean-
ingful processes. Empirical methods to
examine spatial clustering typically rely on in-
tegrating geospatial data with spatially ex-
plicit econometric models that pay sufficient
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attention to identifying coordinated behavior
from various spurious effects that might oth-
erwise drive spatially similar outcomes.

Models of land use in agriculture have paid
much less attention to the potential for coor-
dinated decisions among farmers, though re-
cent attention to organic farming choices
relative to neighbors (Parker and Munroe
2007), coexistence of genetically modified and
nongenetically modified crop farmers (Beck-
man and Wesseler 2007), and farmland pres-
ervation (Towe, Nickerson, and Bockstael
2008) suggests a more substantive push in this
direction. Driving all of these examples is the
potential for spillover externalities, such as
pesticide contamination, pollen drift, the prox-
imity to protected open-space, or land attrib-
utes, to affect neighboring farmers’ decisions.
Another possibility is that farmers coordinate
around more positive external effects, such as
learning, reciprocal exchanges, cooperative
marketing, and volume premiums, to cluster
similar types of land-use behavior. Identifi-
cation of these types of behavior could be of
significance in shaping how agricultural and
resource economists model a wide range of
spatially important outcomes, including agro-
biodiversity conservation, watershed ecosys-
tem service production, biomass provision for
distributed cogeneration facilities, and re-
gional product niche strategies (Lewis, Bar-
ham, and Zimmerer 2008).

This article examines the spatial spillovers
associated with the adoption of an important
agricultural “clean” technology: organic dairy
farming. The application is set in southwest-
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FIGURE 1
Spatial Expansion of Organic Dairy Farms in Southwestern Wisconsin

ern Wisconsin, a major production source for
the recent dramatic growth in organic milk
production across the United States, and the
home base to Organic Valley, a cooperative
that along with Horizon (Dean Foods) is re-
sponsible for marketing about two-thirds of

the country’s organic dairy products. Set
against the spatial distribution of conventional
dairy farms, the four panels of Figure 1 dem-
onstrate the very rapid growth in organic dairy
farm numbers in this region between 1998 and
2008, and especially since 2001. A closer look
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at Figure 1 shows several types of clustering.
One is along an upper-middle transverse be-
tween Vernon and Monroe counties. Another
is within a relatively proximate distance to the
home base of Organic Valley (though they ac-
tually do very little processing within 50 miles
of their corporate headquarters in LaFarge, so
local transportation clustering around LaFarge
is itself not a crucial factor).1 A third type of
clustering is more local, groups of organic
farms in a neighborhood or watershed. A
closer look at the organic dairy farms in the
fourth panel of Figure 1 reveals that many of
the farms are adjacent to, or very near to, one
or several other organic neighbors, despite the
fact that only about 6% of the farms in these
six counties are organic. One simple descrip-
tive statistic captures the extent of spatial clus-
tering. As of 2008, an average organic dairy
farm in this region had 23 other organic dairy
farms within a 10-mile radius, compared to a
nonorganic farm, which had only 14.

One explanation for this clustering is the
location of Organic Valley and its initial re-
cruitment strategy of seeking nearby farmers
to convert to organic farming. Another would
be the type of local biophysical conditions
(e.g., sloped pastureland over flat row-crop
land) that might limit the potential for a dairy
farmer to follow the conventional dairy farm
expansion option and enhance the perfor-
mance of an alternative grazing-based farming
system option (Brock and Barham 2009). A
third would be the learning and reciprocity that
might develop around a technological option
as distinctive as organic dairy farming is from
conventional.2 For example, in addressing the
challenges involved in learning organic pro-
duction, George Siemon, CEO of Organic Val-
ley, claims that “there is no better teacher than

1 Organic Valley owns one moderate-sized butter pro-
cessing plant in Chaseburg, Wisconsin. It contracts for the
rest of its dairy processing with processors in Wisconsin and
in other states around the country.

2 Family farms, which to this day dominate global ag-
ricultural production, are an institutional form that internal-
izes knowledge transfer (especially across generations) and
reciprocity arrangements. While they could well be an im-
portant source for information transfer and shared arrange-
ments around a new technological option, such as organic
farming, we also have in mind farmer-to-farmer information
transfers, exchanges, and coordination mechanisms, which
depend on spatial and social proximity beyond family ties.

your fellow farmer” (Siemon 2006). All of
these spatial explanations are explored below
using a reduced-form panel data model of or-
ganic conversion decisions. Only the last ex-
planation would be confirmation of the type of
“spillover” effect that we seek to identify.

Conceptual, data, and econometric identi-
fication challenges constrain the capacity of
researchers to identify land-use coordination
decisions among farmers. At the conceptual
level, agricultural economists almost always
conceive of farmer decisions primarily as an
individual agent utility or profit maximization
decision under perfect information, some-
times under risk, but rarely under uncertainty.
Typically, a learning process is not explicitly
included. Even more rarely are those deci-
sions considered in relationship to what
neighboring farms might be doing and how
neighbors might shape the knowledge, pro-
duction, marketing, or other aspects of the
farm management decision. While Conley
and Udry (2010) and Foster and Rosenzweig
(1995) do explicitly consider social learning,
they do not explicitly consider the landscape
or spatial patterns of that process. Rural so-
ciologists writing on the adoption of alterna-
tive farm practices often stress the importance
of local knowledge, farmer information-shar-
ing networks (e.g., pasture walks), and other
forms of coordination (Hassanein 1999; Bell
2004). Those contributions have yet to make
much headway into formal models of farmers’
land-use decisions, in part because learning
itself receives little explicit attention in agri-
cultural economics models beyond technol-
ogy adoption models (Marra, Pannell, and
Ghadim 2003). There, learning issues have
been repeatedly identified as central (Gril-
iches 1957; Lindner 1980; Feder and O’Mara
1982), but they have not been linked explicitly
to neighbors or spatial considerations. In the
next section, we contribute a broad conceptual
discussion of the organic dairy farm conver-
sion decision, focused on a real options model
with sunk costs, uncertainty, and learning. Our
broad hypothesis is that neighboring farmers
can help to reduce the uncertainty by lowering
the fixed costs of learning about the emerging
and distinctive farming system. In the real op-
tions context, this reduction in fixed costs of
learning could help to reduce the hurdle rate
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associated with the sunk costs of converting
from conventional to organic production.

Data availability has constrained econo-
mists’ capacity to identify spatial phenomena,
especially coordination of behavior across
farms. Most available datasets do not provide
enough information on neighboring farmers’
management practices to allow a spatially
explicit approach to individual farmer deci-
sions. Gathering survey data from a popula-
tion of farms in a large enough area to develop
such an inventory would tend to be very ex-
pensive and is not standard in most regular
government-sponsored surveys, such as the
Agricultural Resource management Survey or
National Resources Inventory (NRI), which
agricultural economists exploit for many of
their land-use studies.3 Recent innovations in
geospatial methods allow more comprehen-
sive land-use inventories to be developed,
especially if they can be geocoded and inte-
grated with datasets capturing biophysical, in-
frastructural, and other spatial features. This
article integrates a population list of Wiscon-
sin dairy farms with information from third-
party certifiers on the entry of organic dairy
farms, geocodes these operations, and links
them explicitly to information on the bio-
physical and tax values of the property, which
help to identify the econometric model. The
final dataset consists of a 10-year panel of the
spatial location of organic dairy farms across
southwestern Wisconsin. This novel spatial
panel dataset of organic conversion decisions
overcomes the data constraints that limit more
explicit spatial analysis of farmer behavior in
typical datasets.

The third constraint relates to identification
of spatial spillovers. Similar to Manski’s
(1993) analysis of social interaction, Irwin
and Bockstael (2002) argue that spatially cor-
related unobserved characteristics can con-
found the estimation of spillover externalities
when modeling land-use change. In the case
of adopting organic dairy techniques, the pres-
ence of spatially correlated unobservable

3 The NRI presents repeated samples of land plots and
tracks current land use and soil quality on each plot. How-
ever, since the exact location of NRI plots is not revealed
due to confidentiality restrictions, this data is of limited
value in examining spatial spillovers.

characteristics could push farmers toward
making similar decisions that are unrelated to
their effect on one another. This argument is
similar to Ellison and Glaeser’s (1997) point
that geographic concentration in an industry
does not by itself imply the existence of a
spillover effect, because certain regions may
have natural advantages to location over other
regions. Our econometric approach exploits
the panel nature of our data to control for this
prospect, building on the correlated random-
effect estimation approaches originally devel-
oped by Mundlak (1978) and Chamberlain
(1982), and now widely applied to nonlinear
panel data estimation (see Wooldridge 2002).
The correlated random-effects framework
treats unobserved farm-level heterogeneity as
a function of the average of time-varying co-
variates (such as the number of neighboring
organic farmers). This approach mimics the
identification strategy of fixed-effects esti-
mation but can be applied to nonlinear mod-
els. Since the actual number of neighboring
organic farmers varies over time, we are then
able to separately identify the impact on or-
ganic conversion of the previous adoption de-
cisions of neighbors. As applied to the
land-use decision, our spatial application of
the correlated random-effects model provides
an alternative strategy to identify spatial spill-
overs from conventional spatial econometric
models that are designed for cross-sectional
data (e.g., Anselin 2002; Pinske and Slade
1998; Klier and McMillen 2008). Our ap-
proach could be widely applicable to the
many other land-use analyses that attempt to
model the effects of surrounding land uses on
the decisions of landowners (e.g., Irwin and
Bockstael 2002; 2004; Carrión-Flores and Ir-
win 2004; Newburn and Berck 2006; Towe,
Nickerson, and Bockstael 2008). This strategy
does not, however, provide a behavioral iden-
tification of why these spatial spillovers arise
in the adoption of this technology, which will
require further detailed on-farm survey data.

II. ORGANIC ADOPTION, REAL
OPTION MODEL CONSIDERATIONS,
LEARNING COSTS, AND NEIGHBORS

A general explanation for the fundamental
role of learning from neighbors can be drawn
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from the technology adoption literature. In a
broad class of models (Griliches 1957; Lind-
ner 1980; Feder and O’Mara 1982), as the
fixed costs of learning about the technology
decline, knowledge about its performance un-
der various conditions becomes more widely
available, and the potential for adoption of the
technology spreads. The spatial reflection of
this process would be that farmers with more
neighbors adopting the organic technology
would see their fixed costs of learning decline
more rapidly than farmers without proximate
neighbors adopting the organic technology.
That more rapid decline would allow for
adoption patterns to be clustered in a manner
that would not be predicted by more-general
time trends of the diffusion of the technology
(Brock and Durlauf 2009).

Because adoption of new technologies, es-
pecially alternative “farming systems,” often
involve substantive sunk costs or irreversible
investments (Purvis et al. 1995), we focus the
rest of this section on developing a real op-
tions model version of the conversion deci-
sion. In the case of organic farmland
conversions, most of those sunk costs are in-
curred in the three-year certification period
during which farmers are required to replace
certain conventional management practices
with organic alternatives, such as organic soil
nutrients, no chemical pesticides or herbi-
cides, and organic feeds. As a result, farmers
usually incur higher costs of production be-
fore they receive the anticipated price pre-
mium for their product. These foregone
profits, or start-up costs of organic conversion,
are irreversible in the sense that the farmer’s
certification costs are not fully recoverable if
the farmer decides to exit from farming or or-
ganic management practices.4

4 Sunk cost recovery will likely depend on the farmer’s
decision to sell assets. If farmers exit organic farming with-
out selling lands and cows, the sunk costs are lost. If they
sell cows and/or land on a certified organic dairy farm, then
they can potentially recover a significant portion of the costs
associated with conversion. But, if they want to continue
farming, there may be other major losses associated with
moving their operations. In that case, they would need to
compare the pecuniary and nonpecuniary losses of moving
their farm and potentially their family in order to exit organic
farming and recover sunk costs.

Conversion to organic dairy farming gen-
erally involves major reorganization of sev-
eral systems of farm management, including
animal health, crop and pasture cultivation,
forage and feed purchasing and storage, and
manure storage and handling. Each of these
system reorganizations can involve substan-
tive changes in equipment, facilities, types of
allowable inputs, and basic managerial strat-
egy. These changes increase both the extent
of sunk costs involved and the potential for
uncertainty regarding the performance of and
interactions among these new systems of farm
management. For example, securing the op-
timal mix of forage and feed for pasture-
grazed cows becomes more challenging in
part because their feed consumption is not as
observable as it would be in a fixed-stall con-
finement operation. That, in turn, makes iden-
tifying the source of lower milk yields
(changing feed inputs versus health problems)
more challenging. Identifying potential solu-
tions for such problems and learning new
ways to manage information in order to re-
duce uncertainty in these new systems takes
time, experience, and integration of various
types of information.

We treat this conversion (or start-up) de-
cision as a real option model involving sunk
costs, uncertainty, and fixed costs of learning.
Our conception builds on an extensive litera-
ture in agricultural economics that was largely
spawned by Dixit and Pindyck (1994), draw-
ing from efforts to model technology adoption
of perennial crops with yield and price uncer-
tainty (Price and Wetzstein 1999; Shively
1999), modern irrigation technology with
emerging water markets (Carey and Zilber-
man 2002), and conservation technology
(Purvis et al. 1995). As in all of these exam-
ples, the presence of sunk costs and uncer-
tainty introduce an option value that makes
the investment decision depend on satisfying
a “hurdle rate” that is greater than the typical
positive net present value of the investment
relative to other choices. Our addition is to
suggest that the fixed costs of learning about
organic farming methods and practice intro-
duce what can be considered a second wedge
in the hurdle rate that must be reached before
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the farmer invests.5 As a result, as neighbors
adopt the technology, proximate farmers
would face a lower net hurdle rate associated
with fixed costs of learning and be more likely
to adopt the organic technology sooner.

Formally, our decision rule for farmer n to
convert to organic (O) dairy farming from
conventional (C) in time t can be written as
follows:

NV � ENPV(O )� ENPV(C )nt nt nt

� OPV � L (N )�0, [1]nt t nt

where NVnt is the net value at time t of con-
verting farm n from conventional to organic
agriculture into the future, ENPV is the farm’s
expected net present value given conventional
or organic practice, OPV is the option value
under uncertainty of killing the option to wait,
and L(Nnt) is the fixed cost of learning, which
declines with the number of N neighbors that
in time t have adopted organic dairy farming
within a certain radius of farm n.6 Both OPV
and L(Nnt) are likely to evolve over time. For
example, one could imagine the fixed costs of
learning declining over time as general
knowledge of a technology spreads; this could
be captured with another argument in L re-
lated to broader diffusion trends. Meanwhile,
OPV could decline (or rise), as uncertainty
over relevant product and input prices falls
(increases). Depending on the path of the hur-
dle rate decline, it is not hard to imagine an
accelerating adoption rate of the organic tech-

5 Fixed costs of learning in technology adoption have
been studied in numerous papers (e.g., Just and Zilberman
1983), but they have not been included in irreversible in-
vestment and uncertainty models, which generally assume
that uncertainty is purely random rather than being poten-
tially related to the emergence of a new option that requires
learning. However, the potential effect of sequential learning
about related investment projects in a real options frame-
work has been a topic of recent interest and is explored by
Smith and Thompson (2009). Our line of inquiry is distinct
from their effort, because the information spillovers consid-
ered in their and related papers have to do with firm discov-
eries about correlated asset options, such as petroleum
leases, and not in what they might learn about returns from
proximate choices by neighboring farms.

6 It is worth pointing out that if there are other positive
effects associated with having neighbors adopting the tech-
nology, such as reciprocal labor and equipment sharing or
other logistical cost savings, then the L term could become
positive.

nology. But, what should distinguish the two
hurdle rates empirically is whether the num-
ber of neighbors adopting matters to the de-
cision of individual farmers. Controlling for
spurious but spatially correlated unobservable
variables becomes the fundamental empirical
challenge.

We provide no further explicit structure on
this decision rule here, because our econo-
metric model in the subsequent section is a
reduced-form panel-data model that does not
explicitly treat the evolving dynamics of the
farmer’s decision problem by considering
such phenomena as product and input price
uncertainty, production uncertainty, or direct
investments in learning. The reduced-form
econometric model has the advantage of being
less sensitive to specific modeling assump-
tions. In particular, while we motivate spatial
spillovers with a real options framework, our
reduced-form econometric model would pro-
vide consistent estimates of the spillover ef-
fect even if farmers instead made the organic
decision based on a net present value rule.

III. ECONOMETRIC MODEL OF THE
LANDOWNER’S ORGANIC
CONVERSION DECISION

We cast the farmer’s decision problem as a
matter of deciding whether to convert his con-
ventional dairy farm to organic production at
time t. The decision problem is cast in terms
of the reduced-form net value of converting
to organic dairy. As defined in equation [1],
conventional farm n is converted to organic
production at time t if the net value of con-
verting the farm to organic is positive. For-
mally, we denote the reduced-form net value
of conversion by

NV � V(x ,on , z )� � � � [2]nt n nt t n nt,

where xn is a vector of time-invariant farm
characteristics, onnt is a vector of variables
indicating the number of organic neighbors
surrounding farm n at time t, zt is a vector of
period t-specific dummy variables that capture
period-specific shocks that influence the value
of converting to organic for all farms, isvnt
an i.i.d. standard normal random variable, and

denotes a farm-specific characteristic ob-�n
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TABLE 1
Number of Organic Dairy Farms Certified by Year

Year of Certification Number of Farms

1998 5
1999 11
2000 19
2001 7
2002 12
2003 19
2004 11
2005 8
2006 16
2007 17
2008 6

served by the farmer but not by the analyst.
The observable portion of the land value func-
tion is specified as a linear function of the
form

V(x ,on , z )� x �� � on � � � z ��. [3]n nt t n nt t

The data used in the analysis includes re-
peated observations of the farm-level decision
to convert, , where if the net valuey y �1nt nt
of conversion defined in [2] is positive, farm
characteristics xn, and onnt. Our use of the
term repeated is not meant to imply that farms
move back and forth between organic farm-
ing. Rather, we observe the implicit organic
conversion decision for all conventional farms
repeatedly over time (e.g., whether farms con-
vert in 1995, convert in 1996, etc.). Letting

denote the standard normal cumulative�( • )
distribution function, the probability of con-
version, conditional on xn, onnt, zt, and is�n
given by a probit model7:

Pr(y �1⎪x ,on ,z ,� )nt n nt t n

��(x �� � on � � � z �� � � ). [4]n nt t n

The parameters in equation [4] can be esti-
mated by maximum likelihood, where
Gaussian quadrature or simulation techniques

7 One could alternatively motivate the decision process
as a survivor model, such as Irwin and Bockstael’s (2002)
hazard model of the urban land development decision, es-
timated with a Cox partial likelihood approach. However, as
noted by Cameron and Trivedi (2005, 600), our approach
using a binary probit model of the probability of conversion
in each period, with separate intercepts for each period, can
be interpreted as a simple hazard model.

may be necessary depending on the treatment
of .8�n

Data Sources

The data used for estimation are derived
from a novel spatial panel dataset, where the
conversion decision is tracked for a set of over
1,800 independent dairy farms in southwest-
ern Wisconsin over a period of 10 years.9 The
location of each farm was digitized to a geo-
graphic information system, and the dataset
was constructed in the following way. First,
we gathered a list of dairy farms within our
study area from the Wisconsin Department of
Agriculture, Trade, and Consumer Protection
records. Using owner names and/or addresses,
we matched farms to digital parcels in space
from county land record offices or digitally
rectified Wisconsin plat maps. Since many
farmers own multiple parcels, the dairy par-
cels were identified by finding those parcels
with significant improvement values (typi-
cally over $50,000) for the “other” tax cate-
gory, indicating structural improvements. The
existence of farm facilities within the parcel
was verified with aerial photos from the U.S.
Department of Agriculture’s National Agri-
culture Imagery Program and, for a subsample
of questionable farms, through physical
ground-truthing. Organic dairy farms were
identified with records from organic certifiers
throughout the Midwest, from which we also
obtained organic certification dates.10 The
date of certification is directly provided by the
certifying agencies, and contemporary or-
ganic certification standards require 3 years of
organic production before certification of

8 Manski’s (1993) reflection problem does not arise in
equation [4] because we include the actual number of or-
ganic farmers in the reference group, not the average number
from the group.

9 The implicit assumption in the analysis is that the or-
ganic decision is a “conversion” from a conventional dairy
farm rather than a new “start-up” of an organic dairy farm.
This assumption provides a conservative estimate of the
value of social learning, since new entrant organic farmers
would likely face even larger learning costs associated with
farm entry. Empirically, new start-up farms are quite rare.
New entrants almost always purchase a previous farm.

10 Midwest Organic Services Association, Organic Crop
Improvement Association, and Oregon Tilth are the primary
certifiers in the region.
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TABLE 2
Summary Statistics of Independent Variables

Mean Std. Dev.

Soil quality (LCC Scale) 2.18 0.46
Distance to OV (miles) 22.35 9.83
Structure ($1000s) $106 $74.17
Number of neighboring organic

farms within 5 miles
1995 0.00 0.00
1996 0.00 0.00
1997 0.00 0.00
1998 0.09 0.32
1999 0.45 0.65
2000 0.96 1.17
2001 1.20 1.43
2002 1.67 2.03
2003 2.18 2.63
2004 2.52 2.82
2005 2.81 3.24

Number of neighboring organic
farms between 5 and 10 miles

1995 0.00 0.00
1996 0.00 0.00
1997 0.00 0.00
1998 0.27 0.57
1999 1.09 1.22
2000 2.36 2.38
2001 2.95 2.98
2002 4.11 4.05
2003 5.46 5.33
2004 6.17 5.75
2005 6.91 6.35

Note: LCC, Land Capability Classification.

land, and 1 year for certification of a dairy
herd. However, in addition to certifying their
herd, every organic farmer in our sample also
has her land certified for producing crops such
as corn and wheat, or for pasture. Therefore,
we define the year the conversion decision
was made as 3 years prior to the certification
date. Table 1 shows the number of farms cer-
tified in each year from 1998 to 2008.

The spatial panel dataset is supplemented
in several ways to calculate data on farm-spe-
cific variables that might influence the value
of converting a farm to organic production.
First, since all organic dairy farms in our re-
gion also produce crops, the soil quality of
farms may influence organic conversion de-
cisions. A farm’s agricultural productivity po-
tential is classified into four categories of
increasing agricultural productivity as derived
from the U.S. Department of Agriculture Nat-
ural Resources Conservation Service’s nonir-

rigated Land Capability Classification dataset,
and spatially matched to each farm. Soil char-
acteristics are determined by averaging the
land capability class measure for 100 acres
surrounding each farm location (Soil qual-
ity).11 Second, since a farm with large capital
investments might face a larger sunk cost in
converting to organic, we use local tax asses-
sor data to obtain the value of the structural
improvements on the farm (Structure). Third,
given that the country’s largest organic co-
operative—Organic Valley—is located in the
study area, we calculate the distance of each
farm to Organic Valley (Distance to OV) to
account for the effects of physical proximity
to an important institution that has the poten-
tial to influence organic conversion. Finally,
the number of neighboring certified organic
farms is calculated for two radii around each
farm: within a 5 mile radius (Organic farms
within 5 miles), and between 5 and 10 miles
(Organic farms between 5 and 10 miles). Ta-
ble 2 presents descriptive statistics from all
farms.

These statistics demonstrate a steady in-
crease in the average number of neighboring
organic farms surrounding each conventional
dairy farm, a phenomenon that is reinforced
by examining the spatial expansion of organic
dairy in Figure 1. Nonetheless, the conversion
of a conventional to organic farm is a rela-
tively rare phenomenon, ranging from just
0.2% of conventional farms in 1998 to just
over 1% of conventional farms in 2000 and
2003. Relative to conventional dairy farms,
organic farms, on average, are closer to Or-
ganic Valley headquarters,12 have a lower
assessed value of their structural improve-
ments,13 have lower soil quality,14 and have

11 We used the 100 acres surrounding the location of the
primary structure on each farm because it is not possible to
spatially delineate the farm’s boundaries. Many farmers own
multiple parcels, and the available data only allows us to
identify the parcel with the principal dairy infrastructure.

12 The average distance of organic (conventional) farms
to Organic Valley is 18 miles (22.4 miles).

13 The average assessed value of structural improve-
ments on organic (conventional) farms is $93,940
($106,223).

14 The average Land Capability Classification rating on
organic (conventional) farms is 2.24 (2.17).
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more organic neighbors.15 Using a Z-test, the
difference in means across organic and con-
ventional farms for the above variables is sig-
nificantly different from zero at the 1% level.

Identification Strategy

We are particularly interested in identifying
the effects of the number of organic neigh-
bors, onnt, on the probability of converting to
organic dairy at time t. The set of variables
onnt are likely endogenous in the econometric
model for two reasons. First, since the dataset
used for estimation includes repeated conver-
sion decisions over time, onnt is, by construc-
tion, a function of the past conversion
decisions from all farms that neighbor farm n.
Formally, endogeneity bias arises in estima-
tion because onnt is an explicit function of

and , where n� indicates the set of� �n � n �,t �
parcels that are neighbors to parcel n, and
t�� t. Second, onnt may be endogenous if
there are spatially correlated unobservable
characteristics that influence the conversion
decisions of neighboring farms. For example,
multiple neighboring farms may all be on a
major road network used by processors to buy
organic milk. Regardless of its source, any es-
timation strategy that aims to obtain consis-
tent estimates of the effects of onnt on the
organic conversion decision must account for
the endogeneity of onnt.

Prior work on discrete-choice panel data
models has exploited the repeated observa-
tions of individual choices to correct for the
endogeneity of time-varying covariates. In
particular, the most notable work in this area
has developed a correlated random-effects es-
timation strategy (Mundlak 1978; Chamber-
lain 1982). In our case, treating as a�n
random effect induces bias if it is correlated
with onnt. As applied to this dataset, a corre-

15 The average number of neighboring organic dairy
farms within 5 miles for organic (conventional) farms is 1.66
(1.05), while the average between 5 and 10 miles is 4.3 (2.6).
Note that the ratio of the area of a 5-mile circle around a
farm to the area of the doughnut defined by a 5- to 10-mile
radius around a farm is 79:236�0.33. The ratio of the num-
ber of accompanying organic neighbors, 1.66:4.3�0.38, is
pretty close to 0.33. In other words, we expect more farms
within a 5- to 10-mile radius when the farm density is held
constant.

lated random-effects model builds correlation
between and onnt into the model by spec-�n
ifying the farm-specific unobservable as

1 Tn� � � � on � � � � � on � �. [5]n n � nt n nt �0
Tn

The vector in equation [5] is commonlyonn
referred to as the Mundlak-Chamberlain de-
vice, and in our case, equation [5] decom-
poses the farm-specific effect into a mean zero
normally distributed random variable, � �n

, and the average of onnt over allN(0,�)
Tn periods that farm n is observed in the
data ( ).16 More generally, the Mundlak-onn
Chamberlain device includes the average of
all time-varying covariates included in esti-
mation, which in our case is only onnt. The
estimation problem now includes as a pa-�
rameter vector to be estimated.

The identification strategy from a corre-
lated random-effects model is simple and pro-
vides the advantages of a fixed-effects model
when the regression function is nonlinear and
fixed-effects estimation is not appropriate
(Wooldridge 2002).17 Including as an ex-onn
planatory variable controls for the unobserv-
ables that would be correlated with onnt. In
particular, by including , we can identifyonn
the spillover effect by isolating the effects of
the number of organic neighbors at the con-
version time from simply being in a neigh-
borhood where organic farming grows more
rapidly (which would be measured by a high
value of ). This identification strategy isonn
in a similar spirit to Brock and Durlauf’s
(2009) idea of identifying social interactions
by looking for jumps in the fraction of a popu-
lation who have adopted by a particular date.
In addition, including also serves to buildonn
relevant spatial correlation into the model, as

will be spatially correlated with if non onn n�

and n� are neighbors. Identification of the pa-
rameter vector on onnt —the spillover effect

16 Since the model is defined for the decision to convert
a conventional farm to organic, the panel is unbalanced as
farms drop from the dataset once they convert to organic.

17 In linear panel data models, Mundlak (1978) showed
that such a correlated random-effects strategy is identical to
fixed-effects estimation.
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of interest—arises because this variable
changes over time.

There are many time-varying but spatially
constant factors that could potentially affect
the conversion to organic. First, the uncertain
conventional and organic pay price has
changed significantly over the period of our
study and will comprise a large component of
the option value of conversion (Schatzki
2003). However, these prices do not vary
across farmers within the region. Second,
there have been structural changes in organic
certification requirements corresponding to
the National Organic Practices Act in 2002,
and the 80/20 rule18 that relaxed conversion
requirements, but expired in 2007. The effects
of onnt are isolated from time-varying shocks
that affect the conversion decisions of all
farms by including year-specific dummy vari-
ables (zt) that account for all time-varying
spatially constant factors.19

Correlated random-effects estimation pro-
vides a simple way to consistently estimate
the effects of neighboring land uses on the
land conversion decision, and this approach
could potentially be applicable to urban eco-
nomic models of spillovers in urban sprawl
(e.g., Irwin and Bockstael 2002; Newburn and
Berck 2006; Towe, Nickerson, and Bockstael.
2008). This identification strategy works par-
ticularly well when repeated land-use deci-
sions are observed within a landscape that is
changing over time, such as we have in this
application. A changing landscape allows us
to adequately control for time-invariant unob-
servables and time-specific shocks to all par-
cels, where identification of the spillover
effect arises from spatial and temporal varia-
tion in the time of conversion.

Relationship to Other Spatial Econometric
Models

Spatial econometric models are typically
specified with a spatially lagged dependent

18 The 80/20 rule allowed farmers to feed their herd 20%
conventional feed during the first 9 months of their 1-year
herd transition.

19 It is not possible to separately estimate the effects of
zt and the effects of other time-varying, but spatially con-
stant factors such as the organic pay price.

variable included on the right-hand side, or
with an error structure that is spatially corre-
lated (Anselin 2002). While such spatial
econometric models have traditionally been
limited to small datasets when applied to dis-
crete dependent variables, a recent develop-
ment is the linearized method of moments
estimator introduced by Klier and McMillen
(2008), hereafter referred to as KM. The ap-
proach developed by KM is a binary choice
model (Y�0 or 1) that extends Pinske and
Slade’s (1998) GMM estimator with spatially
dependent errors by introducing a spatially
lagged dependent variable, WY, where W is a
spatial weight matrix. Importantly, the line-
arization by KM allows the model to be esti-
mated with large datasets. KM’s strategy for
identification relies on an instrumental vari-
ables approach that replaces the spatially
lagged dependent variable with a value pre-
dicted by a regression of the lagged dependent
variable on the lagged independent variables.

As argued by KM, the underlying assump-
tion in their approach is that the propensity
that Y�1 depends on the propensity for
neighboring observations to have Y�1, and
not simply on whether neighboring observa-
tions have Y�1. While this assumption works
for KM’s analysis of auto plant location de-
cisions, it is much less satisfactory for our ap-
plication. Our hypothesis is that the cost of
learning the organic technology is influenced
by whether neighboring farmers are organic
(Y�1), not on the propensity to have organic
neighbors. As such, our application of the
Chamberlain-Mundlak panel data approach
provides a more satisfactory identification
strategy for our research question. In addition,
most traditional spatial econometric estima-
tion techniques (e.g., Anselin 1988; McMillen
1992; Kelijian and Prucha 1998; Klier and
McMillen 2008) are designed for cross-sec-
tional data, whereas our application exploits
the panel aspect of our data for identifica-
tion.20 Further, our model relates to other ap-

20 An exception is Pinkse, Slade, and Shen (2006) and
Pinkse and Slade (2007), who develop a fixed-effects esti-
mator for a spatial probit model. However, the fixed effects
enter the probit model through the observed choice equation,
rather than the latent variable equation (as we have in equa-
tion [2]). The interpretation of the fixed effect in this work
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proaches with spatially correlated errors
because the Chamberlain-Mundlak device
adds an incidental parameter that creates spa-
tial correlation in the unobservables.

IV. ESTIMATION RESULTS

The econometric model estimates the bi-
nary decision of whether a conventional dairy
farm converts to organic, where the decision
is implicitly observed in each year over a 10-
year period. Once a conventional farm con-
verts to organic, it is dropped from the
estimation sample, creating an unbalanced
panel for our probit model. Equation [4] is
estimated using maximum likelihood tech-
niques with Gaussian quadrature. A likeli-
hood ratio test fails to reject the null
hypothesis that the standard error on the ran-
dom effect ( ) is 0 (5% level). Therefore, we�
restrict to be zero, which allows us to esti-�
mate [4] without Gaussian quadrature as a
pooled probit with the Mundlak-Chamberlain
device ( ) using maximum likelihood withonn
bootstrapped standard errors clustered by
farm.21 The bootstrapped cluster-robust stan-
dard errors allow inference robust to any form
of heteroskedasticity or temporal correlation
across years for each farm (Cameron and Tri-
vedi 2005). A primary challenge with esti-
mation is the small annual probability of
converting to organic dairy of 0.6%. Such a
small probability of conversion brings up a
concern of whether results are sensitive to
functional form assumptions. As such, we run
several robustness checks. First, we estimate
the binary organic conversion decision im-
plied by equation [2] as both a probit and a
logit model. Since probit and logit models
vary primarily in terms of the tails of their
distributions (Greene 2000), estimating the
conversion decision with both models pro-
vides a check on the sensitivity of results to
functional form. Second, to examine the sen-
sitivity of the results to the time period used
for estimation, we estimate the binary con-

is that it affects the probability of a choice through a different
avenue than the latent variable equation.

21 The conclusions from examining the discrete-change
effects in Table 3 are essentially unchanged when estimating
the model with .�

version decision on multiple subsets of the
original dataset, restricting the years of esti-
mation to 1998–2005, 2000–2005, and 2002–
2005.

The econometric parameter estimates for
all parameters are presented in Appendix Ta-
bles A1 and A2. For the nonspillover vari-
ables, farms further from Organic Valley
headquarters are less likely to convert to or-
ganic than farms closer (5% level), while or-
ganic and conventional farms are not
statistically different from one another in
terms of average soil quality or the assessed
structural value of their farm improvements
(5% level). The estimated effect of primary
interest is the discrete-change effect of one ad-
ditional neighboring organic dairy farm on the
probability of conversion (Table 3).22 Results
in Table 3 provide evidence that conventional
farms are more likely to convert to organic
dairy if they have additional neighboring or-
ganic dairies within either 5 or 10 miles. The
estimated discrete-change effects are gener-
ally significant from zero at either the 5% or
10% level,23 and the effects are quite robust
across functional form specification and
across various subsets of the data.24 Using the
full dataset and probit estimates, results in Ta-
ble 3 suggest that having an additional organic
dairy within 5 miles of a farm increases the
farm’s annual probability of converting to or-
ganic by approximately 1.3 percentage points.
While an effect of 1.3 percentage points may
seem small, this result implies that an addi-
tional farm increases the average annual or-
ganic conversion probability from 0.006 to
0.019. When spread out over 10 years, an ad-
ditional farm increases the organic conversion
probability from 0.06 to 0.18. While the dis-
crete-change effect of an additional farm
within the 5- to 10-mile radius is larger than
having an additional farm within 5 miles, we
cannot reject a null hypothesis that the dis-

22 The discrete-change effect is the difference in the
probability of organic conversion due to one additional or-
ganic neighbor.

23 Standard errors for the discrete-change effects are cal-
culated with the delta method.

24 As expected, the efficiency of the estimates dimin-
ishes with fewer observations.
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TABLE 3
Discrete-Change Effects of an Additional Neighboring Organic Dairy Farm

Probit Logit

�5 Miles 5–10 Miles �5 Miles 5–10 Miles

All data
Discrete-change effect 0.013* 0.022* 0.015** 0.026*
Standard error 0.006 0.009 0.008 0.012
Z-Statistic 2.085 2.471 1.797 2.284

Years 1998–2005
Discrete-change effect 0.009* 0.016* 0.011** 0.019*
Standard error 0.004 0.006 0.006 0.008
Z-Statistic 2.101 2.606 1.784 2.280

Years 2000–2005
Discrete-change effect 0.009** 0.010* 0.012** 0.012*
Standard error 0.005 0.004 0.007 0.006
Z-Statistic 1.950 2.337 1.844 2.208

Years 2002–2005
Discrete-change effect 0.014 0.022** 0.022 0.031**
Standard error 0.009 0.011 0.015 0.017
Z-Statistic 1.626 1.939 1.497 1.892

Note: Standard errors are calculated with the delta method.
* Significantly different from zero (5% level); ** significantly different from zero (10% level).

crete-change effect is identical for both radii
(5% level).

V. LANDSCAPE SIMULATIONS

The econometric estimates provide infor-
mation on the discrete-change effects of an
additional neighboring organic farm on the
one-year probability of organic conversion.
However, landscape patterns comprise deci-
sions from many independent farms, and a re-
lated question concerns the effects of an
additional neighboring organic farm on the
time-path of landscape change within a par-
ticular region, such as a watershed. The simu-
lation methodology deployed here builds on
the Monte Carlo approach from Lewis and
Plantinga (2007) and Lewis (2010) that links
discrete-choice land conversion models with
spatial landscape data. We use the methodol-
ogy to generate distributions of the number of
new organic farms within a watershed of simi-
lar characteristics to our study region over a
10-year period. We highlight the role of the
number of initial organic farms and the den-
sity of farms within the watershed on its time-
path.

The simulations algorithm works as
follows:

1. N farms are randomly distributed across a cir-
cular watershed with 5-mile radius, with G
organic farms and N �G conventional farms.
This watershed size ensures that every farm
is within 10 miles of every other, and there-
fore, each farm’s organic conversion decision
affects the probability that all neighboring
farms convert.

2. To ensure that the farms are representative of
our study region, farm characteristics are ran-
domly assigned to each hypothetical farm on
the landscape by assuming that each variable
is drawn from a truncated normal distribution
with mean and variance from Table 2.25 Each
farm’s variables for the number of organic
farms within 5 and 10 miles are calculated
using the distributed landscape from Step 1.

3. Using the parameter estimates from Table A1,
the “all data” probit model, every conven-
tional farm is matched with an estimated or-
ganic conversion probability26 (Krinsky and

25 The normal distribution is appropriately truncated to
ensure that we get no unreasonable values of each variable,
such as, for example, a negative land quality measure.

26 A simulated parameter vector is equal to ˆ� � � �s
, where is the estimated parameter vector, is theˆC �x � CK

K�K Cholesky decomposition of the estimated variance-
covariance matrix, and is a K-dimensional vector ofxK
draws from a standard normal distribution.
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FIGURE 2
Sample Landscape Simulation Results and Box

Plots: Watershed with (top) 17 Farms, (middle) 35
Farms, and (bottom) 70 Farms

Robb 1986). Following Lewis and Plantinga
(2007) and Lewis (2010), the fitted probabil-
ities are interpreted as a set of rules that gov-
ern the decision of each farm to convert to
organic.27

4. A complete time path (t�1, . . . , T) of land-
scape change is estimated.
a. A U� [0,1] random number r is drawn for

each conventional farm, and conversion to
organic occurs if r is less than or equal to
the estimated conversion probability for
that farm; otherwise the farm is assumed
to remain in conventional production.

b. The conversion probability estimates are
updated for t�t�1 to account for any
newly certified organic farms for time t
(accounting for the 3-year certification
lag), and Step 4a is repeated until t�T.

5. Step 1 is repeated until all simulations
(S�500) have been completed.

The simulations are performed with mul-
tiple densities of farms within the watershed.
For a circular watershed with a 5-mile radius,
including 35 farms exactly replicates the av-
erage density of dairy farms observed in our
study region. To test the sensitivity of results
to different farm densities, we also perform
simulations with 17 and 70 farms within the
circular watershed, both of which can be
found for particular 5-mile-radius areas in our
study region.

Sample landscape simulation results for
three different farm density classes are pre-
sented in Figure 2. To illustrate the spatial na-
ture of the landscape simulations, we pull out
one simulated watershed, represented by the
circular plots, from each of the three farm den-
sity classes and present a final simulated land-
scape at t�10. Within a watershed the dots
represent farms; encircled farms indicate
those that have turned organic by the final
simulation period. Watershed 1 (Wshd1) has
one organic farm at t�0 and, to highlight the
ceretis paribus effect of having an additional
neighboring organic farm, Watershed 2 (Wshd
2) differs from Watershed 1 only in that it be-
gan with two organic farms at t�0. The full

27 For example, if the conversion probability is 0.05 for
a particular farm, the farm will convert 5% of the time if the
choice situation is repeated many times.
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FIGURE 3
Landscape Simulation Results: Expected Number of

New Organic Farms on Landscapes of Varying
Farm Density

set of simulations consists of 500 distinct cir-
cular landscapes for each density class.

Figure 2 also shows box plot distributions
of the number of additional farms that con-
verted to organic from all 500 simulations
(“�” signs indicate outliers). For instance,
Watershed 1 in Figure 2a shows that only two
simulations produced additional organic
farms (in one simulation one farm converted
and in one simulation two farms converted),
but the other 498 simulations produced no ad-
ditional organic conversions. In contrast Wa-
tershed 2 in Figure 2c shows that the median
conversion rate was one additional organic
farm per simulation (indicated by the notch in
the box plot), but many simulations produced
more. As can be seen, the effect of an addi-
tional organic farm to each watershed density
in t�0 notably shifts the distribution of the
number of new organic farms by t�10.

Figure 3 shows watershed simulation re-
sults focused on the expected number of new
organic farms based on the number of initial
organic farms in the watershed in t�0 for the
three farm densities. Each point in Figure 3
indicates the average number of new organic
farms across the 500 simulations. Results
highlight the path-dependence property of the
organic conversion process, in particular
showing the nonlinear relationship between
the number of initial organic farms and the
expected number of new conversions over a
10-year period. Further, Figure 3 highlights

the degree to which this relationship depends
on the density of farms within a watershed.
The implications are that the effects of an ad-
ditional organic farm on the conversion of
new organic farms are higher for watersheds
that have a higher density of dairy farms. In-
tuitively, this finding is consistent with our
discussion in Section II, in that knowledge
spillovers from one organic dairy farm have
more outlets to spillover to when occurring on
landscapes with a higher density of farmers.

VI. CONCLUSION

Economists have long been interested in
the logic and patterns of technology adoption
and diffusion. Despite a long and heralded tra-
dition of research on the determinants of tech-
nology adoption, spatial spillovers across
economic agents that might shape adoption
choices, and especially clustered use of the
technology, have been given very little ex-
plicit attention at conceptual, empirical, or
econometric levels. This article provides an
integrated approach to the issue by examining
the role of spatial spillovers in organic dairy
farming in southwestern Wisconsin, a region
that has led the way during the past decade of
dynamic growth in the use of this “clean”
technology. To the extent that governments or
nongovernmental organizations are interested
in promoting such clean technology for en-
vironmental purposes, developing an under-
standing of the presence of spatial spillovers
in the adoption decision can provide policy-
relevant insights.

At a conceptual level, the article makes the
basic point that in a real options model of sunk
costs and uncertainty, the potential role of
economic agents learning from other neigh-
boring adopters can reduce both uncertainty
and the fixed costs of information acquisition
associated with a new (farm) system. In ad-
dition, we argue that there are competing ex-
planations for spatial spillovers, including
positive or virtuous ones, such as learning or
reciprocity, negative or vicious ones, such as
contaminants or damage to valuable inputs,
and spurious ones, such as proximity to a
buyer or a correlated unobservable.28 Perhaps

28 Rapid expansion of organic agriculture would also
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the more subtle point though is that the out-
comes associated with spatial spillovers can
vary within the same sector, such that one lo-
cal neighborhood could experience a virtuous
cycle of learning and reciprocity that ad-
vances rapid adoption of a high-return tech-
nology outcome, while another could not.
Path dependence and nonlinear processes un-
derscored in the work of Arthur (1994), Krug-
man (1995), and David (2007) thus have an
explicit microspatial foundation in technology
adoption contexts, such as the one we have
introduced here based on sunk costs, uncer-
tainty, and learning.

Our empirical contribution is to construct
a unique spatial panel dataset of organic con-
version decisions and use that dataset to iden-
tify the presence of spatial spillovers using
panel data techniques to account for both ob-
served and unobserved spatial effects that
could otherwise confound the analysis of or-
ganic conversion decisions. A novel aspect of
our econometric model is the spatially explicit
specification of the correlated random-effects
model. Its structure mirrors the real option
model set forth in the paper by considering
the conversion decision in each time period

raise the demand for organic inputs. However, such an in-
crease in demand may not necessarily lead to higher input
prices for others if the market for organic inputs is initially
thin.

for a conventional dairy farmer. The results
show that while other spatial and local vari-
ables matter, the presence of neighboring or-
ganic dairy farms is a statistically and
economically significant explanatory measure
in the conversion decision. The simulation ex-
ercise we construct from the empirical data
and econometric estimates shows that spatial
spillovers are sensitive to initial conditions,
the number of early adopters in the region,
and the density of dairy farms, with a strongly
nonlinear dynamic at play that can drive a
clustered technology diffusion process. In the
case of southwestern Wisconsin, while many
neighborhoods (or watersheds) had the under-
lying spatial conditions for organic dairy con-
version, our results suggest that the presence
of an early adopter or two may have swung
the balance between a cluster of dairy farms
converting to organic or remaining conven-
tional. The potentially stochastic nature of this
process is suggestive that path dependence
could play an important role in shaping tech-
nology adoption behavior, at least in certain
situations where the barriers to conversion are
high. Lastly, while our results provide quan-
titative evidence of the presence of a spatial
spillover in the adoption of organic dairy
farming, further research is needed to provide
a behavioral identification of why these spa-
tial spillovers arise in the adoption of this
technology.
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APPENDIX

TABLE A1
Econometric Parameter Estimates (Probit)

All Data Years 1998–2005 Years 2000–2005 Years 2002–2005

Constant �0.32 (0.50) �0.25 (0.48) �0.75 (0.47) �1.26* (0.50)
Soil quality �0.04 (0.12) �0.07 (0.12) �0.01 (0.12) �0.14 (0.14)
Distance to OV �0.06* (0.01) �0.06* (0.01) �0.03* (0.01) �0.014* (0.01)
Organic farms within 5 miles 0.73* (0.15) 0.47* (0.11) 0.37* (0.10) 0.52* (0.18)
Organic farms between 5 and

10 miles
0.98* (0.14) 0.66* (0.09) 0.4* (0.07) 0.68* (0.16)

Structure �0.00012 (0.0009) �0.0002 (0.0009) �0.00078 (0.0010) �0.00118 (0.0009)
1996 0.4 (0.47)
1997 0.74 (0.45)
1998 0.29 (0.45)
1999 0.33 (0.45) 0.18 (0.24)
2000 0.4 (0.44) 0.28 (0.23)
2001 0.35 (0.44) 0.08 (0.25) �0.28 (0.15)
2002 �0.15 (0.59) �0.38 (0.27) �0.62* (0.17)
2003 0.04 (0.46) �0.49 (0.28) �0.86* (0.24) �0.22 (0.20)
2004 �0.84 (0.50) �1.21* (0.36) �1.33* (0.33) �0.9* (0.39)
2005 �3.17* (1.00) �3.14* (0.73) �2.74* (0.63) �2.81* (1.00)
Avg. Organic farms within 5

miles
�1.94* (0.40) �1.14* (0.17) �0.54* (0.15) �0.54* (0.19)

Avg. Organic farms between 5
and 10 miles

�2.52* (0.38) �1.14* (0.17) �0.48* (0.10) �0.7* (0.17)

Number of observations 20,299 14,611 10,882 7,203

Note: Standard errors (in parentheses) are bootstrapped with 500 replications and clustered by farm.
* Significantly different from zero (95% confidence level).

TABLE A2
Econometric Parameter Estimates (Logit)

All Data Years 1998–2005 Years 2000–2005 Years 2002–2005

Constant 0.12 (1.20) 1.45 (1.30) 0.3 (1.22) �1.49 (1.28)
Soil quality �0.11 (0.25) �0.27 (0.27) �0.17 (0.30) �0.47 (0.34)
Distance to OV �0.15* (0.02) �0.15* (0.02) �0.095* (0.02) �0.039 (0.03)
Organic farms within 5 miles 1.83* (0.44) 1.25* (0.32) 1.10* (0.26) 1.68* (0.50)
Organic farms between 5 and 10

miles
2.5* (0.36) 1.76* (0.20) 1.12* (0.17) 2.00* (0.37)

Structure 0.0002 (0.0020) �0.0003 (0.0021) �0.0025 (0.0028) �0.0031 (0.0024)
1996 0.99 (1.10)
1997 1.9 (1.09)
1998 0.94 (1.11)
1999 0.85 (1.10) 0.32 (0.81)
2000 0.81 (1.10) 0.48 (0.76)
2001 1 (1.11) 0.03 (0.81) �0.66 (0.42)
2002 �0.32 (1.23) �1.18 (0.89) �1.52* (0.43)
2003 �0.4 (1.31) �1.96 (1.08) �2.62* (0.73) �0.73 (0.69)
2004 �2.9* (1.23) �4.09* (1.14) �4.18* (0.91) �3.13* (1.18)
2005 �9.6* (2.57) �9.54* (1.91) �8.42* (1.50) �9.47* (2.65)
Avg. Organic farms within 5 miles �4.6* (1.10) �2.31* (0.59) �1.57* (0.38) �1.70* (0.52)
Avg. Organic farms between 5 and

10 miles
�6.46* (0.99) �3.06* (0.40) �1.35* (0.24) �2.07* (0.40)

Number of Observations 20,299 14,611 10,882 7,203

Note: Standard errors (in parentheses) are bootstrapped with 500 replications and clustered by farm.
* Significantly different from zero (95% confidence level).
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