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Many decision-makers are looking to science to clarify how nature supports human well-being. Scientists’ responses have typically focused on 
empirical models of the provision of ecosystem services (ES) and resulting decision-support tools. Although such tools have captured some of the 
complexities of ES, they can be difficult to adapt to new situations. Globally useful tools that predict the provision of multiple ES under different 
decision scenarios have proven challenging to develop. Questions from decision-makers and limitations of existing decision-support tools indicate 
three crucial research frontiers for incorporating cutting-edge ES science into decision-support tools: (1) understanding the complex dynamics of 
ES in space and time, (2) linking ES provision to human well-being, and (3) determining the potential for technology to substitute for or enhance 
ES. We explore these frontiers in-depth, explaining why each is important and how existing knowledge at their cutting edges can be incorporated 
to improve ES decision-making tools.
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A crucial window of opportunity is now opening to   
 deliver scientific understanding of the coupled dynam-

ics of people and the biosphere to decision-makers who will 
influence the future of our planet (Armsworth et al. 2007). 
Many leaders have awakened to warnings—and increas-
ingly to actual experience—that the degradation of nature 
is elevating socioeconomic risks and costs and undermin-
ing human well-being, as well as to unique opportunities 
afforded by protection of natural processes (Guswa et  al. 
2014, Steffen et al. 2015, Ouyang et al. 2016). Deforestation, 
for example, can decrease water quality and flow regular-
ity, increase the risk of downstream flooding, and lower 
the efficiency of hydropower production (Li et  al. 2015). 
In contrast, healthy upstream watersheds can effectively, 
sustainably, and economically provide clean water for those 
who need it, and watershed protection programs are being 
implemented to secure clean drinking water in cities world-
wide (Guerry et al. 2015). However, investing in nature for 
the provision of benefits may have implications for how 

quickly or efficiently these benefits can be delivered and 
for the long-term resilience of service provision. Increasing 
interest from decision-makers is prompting deeper exami-
nation of the case for investing in nature for the provision of 
vital ecosystem services (ES) across a wide range of decision 
contexts (box 1).

Several decision-support tools for spatially explicit ES 
assessment have been developed (e.g., ARIES, Villa et  al. 
2014; Co$tingNature and its related tool Water World, 
Mulligan 2012; InVEST, Sharp et  al. 2014; and LUCI, 
Jackson et al. 2013) that promise to provide easily accessible, 
quantitative assessments of ES provision across a range of 
scenarios (Bagstad et al. 2013). These tools assess provision 
of multiple ES, ideally allowing a decision-maker to under-
stand the impact of a decision on multiple ES and the trade-
offs among them. However, although promising in their 
generality, accessibility, and multiobjective capabilities, most 
ES decision-support tools are missing crucial components of 
the complexity needed to fully answer the question of when, 
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where, and how much nature matters to the resilient provi-
sion of ES and to human well-being (Akçakaya et al. 2016, 
Bennett and Chaplin-Kramer 2016).

In some cases, this knowledge exists in more sophisti-
cated, typically discipline-specific models for a limited num-
ber of ecosystem functions or services, such as SWAT, LPG, 
CENTURY, or EPIC. However, although these models can 
represent more complex processes, they often were devel-
oped for a specific realm (e.g., a catchment-scale agroecosys-
tem for SWAT). Within this realm, some trade-off analysis of 
ES is possible (e.g., Lautenbach et al. 2014), but these tools 
typically focus on biophysical systems, with limited ability to 
deeply address the ultimate benefits to people provided by 
these biophysical systems. Such models also typically require 
at least several months of work with disciplinary expertise 
and on-the-ground monitoring for calibration, demanding 
time and expense that many decision-makers cannot afford. 
In addition to single-discipline, process-based models, a 

wide array of more interdisciplinary, empirical models have 
emerged from detailed field research in specific locations. 
These place-based models can capture much of the com-
plexity of how ecosystems respond to human activity and 
the resulting changes in the provision of ES to people (Qiu 
and Turner 2013, Dawson and Martin 2015, Renard et  al. 
2015). Although these empirical models have proven valu-
able for advancing the scientific understanding of ES, they 
may be less directly useful to decision-makers because of the 
costs and time involved in developing them. However, some 
aspects of the complexity found in these models are needed 
to fully answer the question of when, where, and how much 
nature matters to the provision of ES and human well-being. 
The challenge here is to refine the knowledge gained from 
discipline- or location-specific models into general prin-
ciples that can be incorporated into decision-ready tools to 
inform decision-making across multiple services in a wide 
variety of contexts.

Box 1. Examples of ecosystem service (ES) use by decision-makers. These real-world examples span the scales of decision-
making from local to national to global, with actors on the leading edge of using ES information in major decisions. The 
range of contexts demonstrates the diversity of the types of questions and needs that decision-makers have. (Photographs: 
Jesse T. Rieb, Jillian Treadwell)
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There are also still questions for which the scientific com-
munity’s understanding of when, where, and how much 
nature matters for securing human well-being over time is 
in such an early phase that no models adequately address 
them. We do not fully understand, for example, what types 
and levels of ecosystem, functional, or species diversity 
are needed to provide and sustain vital ES in agricultural 
landscapes or where possible leverage or tipping points of 
service provision lie (Bennett 2016). We also do not know 
when, where, or to what extent nonnatural capitals can 
substitute for biodiversity, such as pesticides for natural pest 
control, fertilizer for healthy soils, or gray infrastructure 
such as dams for functioning floodplains, without causing 
dangerous—and possibly irreversible—declines in future ES 
provision (Bennett et  al. 2015). For the next generation of 
ES tools to more effectively meet decision-makers’ needs, 
further research must explore how these factors play a role in 
ES provision now and in the future and how to model them 
in ways that can be incorporated into decision-support tools.

Here, we investigate emerging knowledge and promising 
theory that may help improve ES decision-support tools. 
Acknowledging that all models face trade-offs between 
realism, precision, and generality (Levins 1966), we argue 
that key elements of complexity can be added to current 
decision-support tools to better represent reality without 
sacrificing too much of the generality that makes them prac-
tical. This is not intended as a critique of the state of all ES 
modeling but rather as an investigation of off-the-shelf ES 
decision-support tools. We point to three critical frontiers 
essential to understanding the relationship between changes 
in nature and well-being where current tools fall short of 
meeting the needs of decision-makers: (1) the complex 
dynamics of ES in space and time; (2) the links between 
biophysical ES provision and human well-being; and (3) 
the potential for technology to substitute for or enhance ES. 
These frontiers are broad categories, each encompassing 
many more specific issues; together, they represent the most 
fundamental gaps in current ES decision-support tools. 
Within each frontier, we identify several specific issues with 
potential for progress and identify concrete steps that can be 
implemented to improve models. Together, these frontiers 
set priorities for improving ES decision tools by integrating 
recent advances in ES research and point to new avenues of 
research needed to answer decision-makers’ most pressing 
questions about ES.

Frontier 1: Space–time dynamics
Landscapes can be complex mosaics of different habitats 
and competing human uses, ever changing in response 
to human and physical drivers. Attempts to quantify how 
much natural processes matter to the provision of ES 
must therefore consider spatial and temporal variation in 
ES, as well as ES interactions, time lags, and community 
needs, from a spatially and temporally dynamic perspec-
tive. Because managers typically consider both current 
and future needs in natural-resource decision-making, 

they require models that can dynamically represent ES. 
Although ES maps are commonplace, they rarely describe 
either the spatial and temporal processes that produced the 
patterns of ES observed today or their ongoing dynamics 
(Seppelt et al. 2011, Renard et al. 2015). Although one could 
theoretically adjust maps and model outcomes to under-
stand how changes might affect ES provision, this approach 
is one-directional (from land use to ES) and fails to capture 
crucial feedbacks. The lack of sensitivity of many existing 
models to drivers and mechanisms limits our ability to 
project future supply and sustainability of ES in the face of 
environmental change or management interventions.

For example, a corporation seeking to protect its busi-
ness from reputational and regulatory risk may proactively 
engage producers in its supply chain to improve water 
quality through agricultural best-management practices, 
as Coca-Cola has done in the Cedar River Valley of Iowa 
(Coca-Cola 2015). Spatially targeting these changes can 
minimize costs and make interventions more feasible and 
scalable. However, without understanding how space and 
time interact in ES models, the targeting can only address 
immediate impacts. Tools that ignore space and time may 
mask saturating or cumulative effects and may therefore 
fail to identify practices that lead to the best long-term 
outcomes. For instance, an agricultural field yielding high 
current returns because of drainage and fertilizer input may 
experience soil degradation and decreasing yields in the 
future; these risks are typically not identified in static maps. 
A short-term or static representation of ES provision is 
especially problematic for managers who must decide where 
to invest in particular types of land-use changes (e.g., Bonn 
et al. 2014) when the drivers of ES provisions are themselves 
changing. We propose the following advances to create spa-
tially explicit and temporally dynamic ES tools.

Advance beyond landscape composition as an ES proxy.  Early 
work assessed ES on a per-area basis, assigning one value, 
in biophysical units or dollars, to each type of habitat 
everywhere it occurred (e.g., Costanza et  al. 1997). Such 
land-cover proxy information has been mainstreamed by 
ES practitioners because it can be easily applied anywhere 
at multiple scales (van der Ploeg and de Groot 2010), 
although this approach has known limitations and poorly 
explains the majority of variance in provision for many ES 
(Eigenbrod et al. 2010). Instead, ES provision is controlled 
by organisms, ecological properties and processes, and 
human impacts that interact spatially with the environment 
in different ways (Syrbe and Walz 2012, van Oudenhoven 
et al. 2012, Remme et al. 2014). Much is known about these 
drivers (Kremen 2005), but the links between drivers and 
ES provision are still missing from many mainstream ES 
tools. By linking with recent progress in understanding how 
particular species traits and functional groups underlie ES 
provision, predictive species-distribution models could be 
used to forecast changes in ES (Lavorel et al. 2011, Civantos 
et al. 2012).
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Advances in remote sensing products can help push 
general ES tools beyond the use of land use or land 
cover (LULC) as a proxy or even as a categorical input. 
Remotely sensed indicators of habitat quality such as 
biomass (Baccini et  al. 2012) or species composition 
(Baldeck et  al. 2015) are becoming available at increas-
ingly fine resolutions and broad extents, and ES tools 
should be adapted to better use this information. Cutting-
edge approaches to derive ecosystem structure and func-
tion from continuous variables could be mainstreamed 
into ES tools to replace or augment inputs currently 
represented by categorical land-use information (Cord 
et  al. in press). For example, the normalized difference 
vegetation index can be linked to bare ground and then 
to the C-factor (otherwise user-defined by land-use class) 
in the Universal Soil Loss Equation for sediment reten-
tion and water purification (Le et  al. 2012). The recent 
availability of hyperspectral data (e.g., EO-Hyperion) also 
allows inputs to move beyond categorical land cover to 
species-specific mapping of key ES providers such as non-
timber forest products (Christian and Krishnayya 2009). 
Nagendra and colleagues (2013) identified many avenues 
for remote sensing to monitor biodiversity through very 
high spatial resolution data (e.g., IKONOS, QuickBird, 
GeoEye, and WorldView-2), hyperspectral data (e.g., 
ASTER, HyMap, AVIS-2, and AHS-160), or 3-D active 
remote sensing data (e.g., LIDAR and SAR), which 
has promising applications for differentiating between 
higher- and lower-quality habitats of the same type and 
therefore provide more accurate estimates of the ES pro-
vided by these habitats. As the imaging complexity and 
spatiotemporal resolution of satellite data sets continue 
to improve, the global coverage of these data sets can 
provide information currently available only in scattered 
locations with ground-based or aerial monitoring. As 
these opportunities expand, the ES community should 
work together with the remote sensing community to 
integrate these advances into decision tools.

Where land-use proxies must be used because of data 
constraints or remaining gaps in the science, models 
that include both landscape configuration and compo-
sition represent these processes better than those that 
include composition alone (Grêt-Regamey et al. 2014). For 
example, connectivity of forest patches can affect insect 
herbivory regulation and soil decomposition rates in sur-
rounding agricultural fields, and more connected forest 
patches may promote higher agricultural yields (Mitchell 
et al. 2014). Similarly, the value of forest parcels to pollina-
tion in Costa Rica depends on the landscape configuration 
around those forests (Ricketts and Lonsdorf 2013). Recent 
evidence suggests that landscape configuration could even 
affect nonmobile services such as carbon storage across 
the tropics (Chaplin-Kramer et  al. 2015a). Incorporating 
some of this knowledge into ES tools could facilitate more 
accurate estimates of ES provision than landscape compo-
sition alone.

Include multiple time steps. No current ES assessment tools 
explicitly incorporate feedbacks to model ES changes 
through time; instead, users must predict changes in key 
drivers over time and run models repeatedly with different 
inputs for each time step. Some studies have projected future 
changes in ES on the basis of land-use change (Bateman 
et  al. 2013, Lawler et  al. 2014), and others have tracked 
past ES changes using spatially explicit historical ES data 
sets (Renard et al. 2015, Ouyang et al. 2016). Both kinds of 
studies demonstrate the importance of temporally explicit 
ES models and may serve as a useful template for building 
this capacity into decision-support tools. However, they all 
still required substantial time and expertise for modeling or 
compiling location-specific historical data.

Most ES tools are designed to estimate changes in service 
provision resulting from land-use change, but the practice of 
comparing only a “current” and even a few different “future” 
scenarios in ES assessment is poorly suited to answering key 
questions decision-makers have about how ES provision 
may change in the future (Goldstein et al. 2012, Bhagabati 
et al. 2014). For example, to improve water quality in their 
supply chains, a company may need temporally explicit 
modeling tools that can account for cumulative effects of 
agriculture practices or time lags between when a solution’s 
implementation and its results. Although technically pos-
sible to conduct such an assessment through iterative runs 
of current ES tools, in practice, this is often ignored because 
it is not easily automated, and guidance is lacking on how to 
convert changes in management or policy into changes in 
the variables that feed into the ES tool. Scenario tools that 
translate decisions or policies into spatially explicit inputs 
are needed, ideally integrated with the decision-support tool, 
so multiple time steps can be run in a single analysis.

Automating links between spatial and temporal dynam-
ics in ES tools is a crucial first step toward facilitating their 
integration into decisions, but a major obstacle remains 
in the synthesis and interpretation of multidimensional 
spatiotemporal outputs (Stillman et  al. 2016). One pos-
sible approach to improve the presentation of this complex 
information would be to adopt a risk framework, similar to 
that used by decision-makers in many branches of govern-
ment, that weighs the probability of an event occurring and 
the severity of the result (DHS 2011, Maron et  al. 2017). 
Such a decision framework would require tools that could 
quantify the probability of ES falling below a certain level 
within a certain spatial extent and time frame, representing 
the minimum desired ES provision set by the decision-
maker (figure  1). Applications of this type of approach 
could include the percentage of land area above a target 
level of service provision, the number of days for which this 
level of service provision is maintained, or the number or 
extent of hot spots of service provision or high-threat areas 
(Qiu and Turner 2013, Schröter and Remme 2016). Targets 
could also be set at the minimum level needed to prevent 
catastrophic future declines in ES or at a level at which 
other capital investments would be needed to maintain a 
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certain level of human well-being (see Frontier 3). Multiple 
model runs using Monte Carlo simulation or other statistical 
probabilistic techniques could estimate the risk of exceeding 
such thresholds under particular combinations of drivers 
(White et al. 1997).

Build models that link multiple ES. Many decision-makers’ ques-
tions involve management of multiple ES at the same time 
(box 1), but most current ES models disregard potential 
feedbacks and interactions among ES. Even tools that can 
model multiple ES, such as InVEST, typically function as 
suites of single-service models, lacking connections between 
the models of different ES. Tools that capture interactions 
among multiple ES through space and time would facilitate 
more effective management, both by helping prevent eco-
logical surprises, in which the management of one ES has 
unexpected consequences for the provision of another, or by 
revealing situations in which one management intervention 

could positively affect multiple ES. Without modeling the 
feedbacks and interactions that control spatial and temporal 
dynamics, it is difficult to fully represent how much nature 
matters to human well-being in any particular decision 
context.

Modeling over longer time frames requires understand-
ing ES responses to changing drivers, including identifying 
whether thresholds in ecosystem dynamics might lead to 
serious impacts with gradual changes in drivers (Chaplin-
Kramer et al. 2015b) or whether time lags in response could 
lead to greater impacts than initially observed (Carpenter 
et al. 2009). Building tools that capture feedbacks and inter-
actions would require substantial structural changes from 
existing tools, which model multiple ES as a suite of single-
service models, to tools that integrate multiple ES from the 
beginning of model construction. This integrated model 
construction could be guided by efforts to model complex 
systems in other disciplines, such as biodiversity (Colléter 
et  al. 2015) or climate science (Cox et  al. 2000). Linking 
multiple ES would likely be facilitated by starting with more 
process-based ES models (see the “Advance beyond land-
scape composition as an ES proxy” section above), allowing 
the sharing of biophysical or social drivers among multiple 
ES when appropriate.

Adding feedbacks and interactions to models rapidly 
increases their complexity and can result in models with 
less predictive power than the simpler models they replace. 
Therefore, decision-makers may also benefit from separate 
exploratory modeling tools that focus on complex system 
dynamics. These models, which would focus on predicting 
general system behavior and directions of change rather 
than quantitatively accurate ES predictions, could help deci-
sion-makers discover important potential feedbacks in their 
systems, and add them to predictive models when necessary.

Advancing beyond landscape composition as a proxy for 
ES, modeling multiple time steps, and linking multiple ES in 
models would all help ES tools better account for spatial and 
temporal ES dynamics. Although these are complex prob-
lems and may require substantial work to fully address, some 
feasible next steps given current scientific knowledge and 
capabilities include the following: (a) Use recent advances in 
remote sensing to move beyond categorical representation of 
LULC to capture elements of ecosystem structure and func-
tion that most matter to ES. (b) Include multiple time steps 
with integrated feedbacks between services and over time in 
future scenario models. (c) Improve visualization through 
approaches such as risk management frameworks to allow 
easier interpretability of spatiotemporal outputs. (d) Build 
simple exploratory models that decision-makers could use 
to learn about potential interactions and feedbacks affecting 
their systems.

Frontier 2: Connecting to beneficiaries
The unique conceptual power of the ES framework is its abil-
ity to illuminate the role of nature in supporting human well-
being, the ultimate measure of how much nature matters to 

Figure 1. Using risk to better communicate complex 
spatiotemporal ecosystem service (ES) dynamics. Panel (a) 
shows the provision of a hypothetical ES across a region at 
three different points in time. Panel (b) shows the risk of ES 
provision falling below a set threshold for the same region. 
Risk is quantified on the basis of the number of time steps 
ES provision falls below the threshold, with high-risk 
areas having ES provision below the threshold at all three 
time steps, medium-risk areas having ES provision below 
the threshold at one or two time steps, and low-risk areas 
maintaining ES provision above the threshold at all three 
time steps.
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people (figure 2). A growing number of recent studies high-
light the considerations needed to better measure ES contri-
butions to human well-being, such as through psychological 
benefits (Bratman et  al. 2012), cultural services (Daniel 
et  al. 2012), recreational opportunities (Peña et  al. 2015), 
and human health benefits (Myers et  al. 2013). Despite 
these advances in the literature, ES decision-support tools 
still typically focus on biophysical supply of services (e.g., 
water purification by wetlands) more than on the resulting 
benefits to people (e.g., reductions in waterborne disease) 
(Daw et al. 2016). For example, modeling ES benefits from 
water purification requires taking account of not only how 
much water is or can be purified, but also who lives (or will 
live) downstream, how those people use surface water, what 
alternative sources of water purification they have access to, 
and what benefits they gain or lose from a marginal change 
in water quality. Few ES tools identify the beneficiaries of a 
given ES in a spatially explicit way, fewer measure specific 
aspects of well-being for those beneficiaries, and even fewer 
model the benefit by mapping connections between spatially 
disaggregated ES demand and spatially explicit supply (Villa 
et al. 2014, Wolff et al. 2015).

A more explicit focus on beneficiaries in ES tools will 
help governments, business, and international organiza-
tions answer their most important questions (see box 1). 

China, for example, seeks to target Ecosystem Function 
Conservation Areas (EFCAs), not necessarily to maximize 
production of ES, but to optimize benefits to people. Areas 
that benefit many people are favored over more ecologically 
productive locations with fewer beneficiaries. The Southwest 
China EFCA, for example, is valued because many residents 
depend on wild forest resources for livelihoods, whereas 
others from the rest of China and beyond derive recreational 
benefits from these same landscapes. Although the policy 
of optimizing benefits to populations is innovative in many 
ways, it can be difficult to apply appropriately without tools 
that identify beneficiaries and their demand for ES, and that 
use appropriate metrics to reflect the values different stake-
holders place on these services across space and time.

Here, we highlight three areas in which modeling advances 
are most needed to help incorporate beneficiaries in the 
valuing of nature.

Identify and locate different beneficiaries. A fundamental first 
step is to explicitly incorporate information about who the 
beneficiaries are and where they are located (Fisher et  al. 
2009). Locating beneficiaries helps identify which ES might 
matter for different groups and which ES are accessible to 
different groups, both of which are crucial to understanding 
the real value of ES. For example, evaluation of a potential 
road-development project in Peru showed disproportion-
ate losses of water-related ES for local indigenous people 
relative to nonindigenous populations due to the spatial 
location of the inhabitants (Mandle et  al. 2015). ES tools 
should disaggregate beneficiaries into meaningful groups 
whose well-being relates to nature in different ways (e.g., 
farmers, municipal water users, and local communities). 
This can help to identify populations that are vulnerable to 
ES changes, or those for whom ecological changes are likely 
to represent net benefits or costs (figure 2; Daw et al. 2011, 
2015).

Several specific tools and techniques could help identify 
and model ES beneficiaries. For example, social–ecological 
inventories catalog individuals and local steward groups 
who play a role in landscape management. These inventories 
can be useful for locating individuals and institutions with 
relevant social–ecological knowledge for identifying and 
disaggregating beneficiaries (Schultz et al. 2007). New tech-
niques that explicitly summarize demographic and social 
data by administrative or ownership boundaries allow for 
more spatially detailed analyses of beneficiaries (Harris et al. 
2005, Maantay et al. 2007), which in turn enables ES model-
ing to better forecast values of hazard mitigation on the basis 
of the social vulnerabilities of different populations (Arkema 
et al. 2013). Social media likewise opens up new avenues for 
data mining to geolocate ES use or beneficiaries (Wood et al. 
2013, Sonter et  al. 2016). Other recent modeling advances 
linking ecological production and social benefits, such as for 
pollination, allow estimates of how much nature matters for 
each land parcel in the landscape, such as how much a given 
farmer’s production and revenue would change if any given 

Figure 2. The relationships between provision of an 
ecosystem service (ES) and human well-being (HWB) 
can vary among groups of beneficiaries. For example, the 
provision of freshwater might initially benefit a group of 
people who live nearby and use it for drinking (group 1). 
This group’s need for freshwater is met relatively quickly, 
and further increases in service provision do not greatly 
increase well-being. Other groups of users, such as farmers 
who use the water to irrigate and who can increase 
production as more water becomes available (group 2), 
may continue to benefit from further increases (until other 
resources become limiting). Depending on the amount of 
service being provided, environmental changes that affect 
service provision may disproportionately affect different 
groups of people.
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unit of forest is degraded or restored (Ricketts and Lonsdorf 
2013). Such efforts allow decision-makers to identify who 
relies most on ES provision in different places and who is 
most vulnerable to disruption in that provision.

ES tools should also be able to disaggregate potential ben-
eficiaries over time, in addition to space, because ecosystem 
change may affect the timing of who receives flows of ben-
efits, who pays the costs, and when. For short time scales, 
temporally disaggregating beneficiaries is typically done 
through a market discount rate in which the present value 
of benefits received at a point in the future is discounted by 
some annual percentage (Farber et  al. 2002). Over longer 
time scales, concerns over intergenerational equity must be 
considered. Discounting can sometimes be used in these 
cases with a social discount rate, but the choice of a discount 
rate can be controversial and other metrics for evaluat-
ing intergenerational tradeoffs may be more appropriate 
(Goulder and Williams 2012).

Model changes in human well-being explicitly and in meaningful 
metrics. To adequately capture beneficiaries and their differ-
ences, decision-support tools must explicitly represent the 
relationships between changes in ES provision and changes 
in demand. In economic terms, such models would represent 
the “utility functions” of different groups of  beneficiaries—
relating changes in ES to changes in some measure of human 
well-being. Figure 2 depicts a hypothetical example of these 
utility functions.

In ES assessments, benefits are often considered in mon-
etary terms (Keeler and Polasky 2014), but monetary value 
is only one metric among many to express changes in human 
well-being. Others include proxies (e.g., visitor days, Wood 
et  al. 2013, Sonter et  al. 2016; number of people at risk, 
Arkema et al. 2013), metrics for physical and mental health 
(e.g., cognitive performance scores, Bratman et  al. 2012; 
nutrient deficiency, Ellis et al. 2015), and indicators of cul-
tural value (e.g., sense of place or shared and social values, 
Chan et  al. 2012). Such nonmonetary metrics can capture 
and communicate benefits that are not easily monetized or 
that have different monetary values for different stakehold-
ers. Although they can be challenging to define and measure 
in a meaningful way, there is evidence that they often carry 
more meaning to beneficiaries and, sometimes, policymak-
ers than do monetary metrics (Martín-López et al. 2014).

Feedback loops between beneficiaries and provision of ES.  The two 
points above represent the first simple steps toward better 
integrating human well-being measures into ES tools. But 
if different groups depend differently on ES over space and 
time, ES demand must be dynamically coupled to ES provi-
sion. Preferences for and use of different ES, the availability 
of technical substitutions for those ES (see frontier 3), and 
the importance and location of service-providing ecosys-
tems all differ among groups of beneficiaries (Wolff et  al. 
2015), and this must be taken into account to accurately 
model the delivery of benefits to stakeholders.

Most simply, incorporating utility functions that deter-
mine the probability of ES use explicitly based on the social 
and ecological qualities of the system (e.g., harvesting 
costs adjusted for quality of the harvest for timber) will 
help predict changes in preferences, and therefore changes 
in benefits received through the provision of ES. Without 
modeling ES demand as well as supply, we cannot predict 
whether service provision will be adequate to meet cur-
rent and future needs, making it difficult for a government, 
development agency, or other decision-maker to assess the 
true consequences of development for human well-being 
(García-Nieto et al. 2013).

Furthermore, for large changes or over long periods, 
links between sectors of the economy and changes in nature 
become more important. A typical scenario approach to 
modeling ES might link expected changes in socioeconomic 
drivers first to changes in landscape patterns, and then to 
the benefits populations derive from an ES. But communi-
ties often respond to changes in the environment through 
shifts in the workforce, net in- or out-migration, and other 
dynamic changes. Such transformations in a community 
may require more sophisticated economic modeling tech-
niques such as general equilibrium modeling, in which 
different sectors of the economy are linked. This has rarely 
been considered in ES assessments (but see Pattanayak et al. 
2009, Lawler et al. 2014), but integrating such links into ES 
tools would clearly show how each economic sector feeds 
back to affect land-use and ecosystem function (Holland 
et al. 2015, Liu et al. 2015).

Locating beneficiaries, using appropriate valuation met-
rics, and incorporating feedback loops represent some of the 
advances required to better model the value of ES to benefi-
ciaries in decision-support tools. Some immediate next steps 
toward realizing these include the following: (a) Distinguish 
different groups of potential beneficiaries (e.g., farmers, 
municipal water users, and out-of-state tourists) for each ES 
in question, and map them in space. This would facilitate 
linking already-available demographic and social data with 
ES models. (b) Devote as much effort to developing rigorous 
utility functions, which link ES supply to realized benefits, 
as the ES community has devoted to date on production 
functions, which link natural capital to ES supply. (c) Create 
demand-side models that easily interface with readily avail-
able supply-side models to allow for dynamic feedback, per-
haps through simple iterative updating. (d) At the beginning 
of an ES assessment, simply ask stakeholders which metrics 
of value are salient to decisions and those affected by them. 
Tailor models to report outcomes in these metrics.

Frontier 3: The role of different types of capital in  
ES provision
Although provision of ES results from the interplay between 
social and ecological systems (Fisher et al. 2008, Díaz et al. 
2015), how the exact combinations of social and ecological 
contributions affect the resilient and sustainable provision 
of multiple ES remains unclear (Carpenter et  al. 2009). 
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ES research has tended to frame research questions either 
with respect to human intervention or with respect to eco-
logical processes rather than on the complex interactions 
between ecological and social components in the provision 
of ES (Bennett 2016). Because the fragmented knowledge 
obtained from disciplinary studies cannot simply be com-
bined to better understand a complex system (Norgaard 
2008), the interactions between social and ecological pro-
cesses are not often incorporated in ES assessment tools 
(figure 3; Raudsepp-Hearne et  al. 2010), rendering these 
tools incomplete and potentially causing predictions of ES 
provision to be inaccurate.

Ecologists’ conceptualization of ES, and therefore models 
of them, often begin with ecosystems and end with the deliv-
ery of services to people (e.g., Haines-Young and Potschin 
2010), despite acknowledgement of the role of human inter-
vention in the provision and delivery of services (Norgaard 
2010, TEEB 2010). Similarly, in the economic literature, 
work has focused primarily on understanding the value of 
ES in an attempt to value natural capital, without deeply 
addressing ecological factors (Fisher et  al. 2008). Recently, 

there have been calls to address ES from a social–ecological 
perspective that would more accurately include other forms 
of capital or social factors such as infrastructure (e.g., pipes 
for irrigation) or management institutions (e.g., collective 
use rights around irrigation water) that can be critical to 
the delivery or accessibility of ES and their benefits (Reyers 
et al. 2013, Palomo et al. 2016). However, little quantitative 
work has been done to understand the complex interplay 
between biophysical and social systems in ES provision 
(but see Rathwell and Peterson 2012, Mogollón et al. 2016). 
Instead, much of what we know remains disciplinary, use-
ful for answering the most important questions of a field of 
study, but perhaps not as useful for building models that can 
address decision-makers’ key questions (box 1), which often 
relate to the complex interactions of social and ecological 
systems in ES provision (Braat and de Groot 2012).

A deeper, more subtle understanding of the roles of 
human and technological complements and substitutes for 
ES provision could support more effective ES management 
and policymaking, especially when decision-makers are 
choosing between providing a service through ecological 

Figure 3. Hypothetical relationships between natural capital and other capital and utility toward the provision of three 
ecosystem services (ES). The x- and y-axes represent stocks of natural capital and other capitals, respectively. Utility 
(conceptualized here as ES provision) is shown by the contour lines and shading (darker shading, increased utility). For 
agriculture (a), both capitals are complementary, and both are necessary for service provision. Growing crops requires 
a certain amount of human labor and technology (e.g., seeds and tools) but also requires natural capital (e.g., soil and 
pollinators). Investing in either natural or other capitals can increase utility up to a point, but eventually, a further 
investment in the other will be necessary for a continued increase in service provision. For water-quality regulation (b), 
natural and other capitals are substitutes: Water can be cleaned by a natural wetland or by a man-made water-treatment 
plant, and each can be completely effective without the other. Here, we assume utility increases linearly with other capital, 
because we assumed demand for water was unlimited and that capacity could readily be added to a water-treatment plant 
over the range of values shown, whereas we assumed it increases at a decreasing rate with natural capital, because there 
is a limit to the water-purifying capacity of even the most well-maintained wetland. Therefore, although investments in 
natural capital might be most effective when demand is relatively low, technology may become a better investment as 
demand increases. For recreation (c), we assume utility is primarily driven by natural capital, with the scenic quality of 
the area largely determining the number of visitors and the enjoyment they derive from it. However, there is a minimum 
amount of other capital (e.g., roads and parking areas) required for people to access the areas and benefit from the service. 
Once basic access is established, further investments in other capital (e.g., trail improvements and interpretive signs) can 
increase utility up to a point. However, continued investments in other capital eventually decrease utility, either as the area 
becomes too crowded or as overdevelopment begins to degrade the natural experience.
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processes or through built infrastructure (e.g., Chichilnisky 
and Heal 1998). For example, farmers in the Montérégie 
must decide each year how much to rely on native predators 
to control pests such as soybean aphids and how much to 
rely on pesticides; the magnitude of the pest outbreak, popu-
lations of natural-control organisms, and pesticide costs are 
factors that might affect these decisions. To make this deci-
sion, farmers need tools that incorporate natural and social 
factors and go beyond simply estimating landscape capacity 
to provide pest control. Likewise, city planners in the region 
are deciding where to invest in conservation to meet the 
regionally mandated target of 17% of land allotted to green 
space with greatest overall benefit to people (CMM 2011); 
they therefore need to anticipate service delivery and human 
use by understanding how infrastructure and human institu-
tions complement and enable access to that space. Although 
these examples are not simple, they are relatively straight-
forward to address, because they involve questions about the 
provision of only one or two services and are strongly linked 
to a particular place. Situations requiring more generalized 
tools or models that predict outcomes for multiple services 
are considerably more complex, and existing tools therefore 
tend to simplify by focusing on only one component (usually 
ecosystems) of ES provision.

The role and balance of ecological and social components 
in ES provision may also lead to contrasting emergent sys-
tem properties or different effects on sustainable long-term 
ES provision (Fischer et al. 2015). For example, to evaluate 
an infrastructure loan, the Inter-American Development 
Bank (box 1) may need to know the relative economic costs 
of investing in a dam or wetland restoration to prevent 
flooding of a road. A cost–benefit analysis will be inaccurate 
without considering long-term maintenance costs of either 
solution and the sustainability of multiple services provided. 
Although it often appears that technology can, in the short 
term, fully substitute for nature in providing for human well-
being, it is unclear how these two strategies compare in the 
long run in terms of resilience to different perturbations or 
sustainability under different conditions (Raudsepp-Hearne 
et  al. 2010). Being able to model these dynamics would 
enable decision-makers to better consider the broad impli-
cations of different management options. We propose three 
necessary scientific advances.

Include institutional and technological factors of ES provision in 
models. In most ES models and tools, the nonnatural capitals 
that enhance ES provision are either implicit (e.g., a timber 
production model that only measures trees and assumes nec-
essary infrastructure and management practices for harvest-
ing them are in place) or ignored (e.g., a pollination model 
that does not account for pollination provided by managed 
honeybees). This failure to explicitly include human made 
infrastructures and capital in ES models and tools means it 
is impossible to assess their relative importance to service 
provision. Improved models could show when it makes 
sense to invest in complementary infrastructure (that takes 

advantage of services nature provides) versus technological 
solutions that replace (substitute for) the role ecosystems 
could play in service provision. For example, provincial law 
mandates riparian buffers between streams and agricultural 
fields in the Montérégie to protect water quality, but sub-
surface drainage systems, which are common in the region, 
allow runoff to bypass these buffers, reducing their effec-
tiveness (Terrado et  al. 2015). Here, investments in water-
purification technology or different agricultural drainage 
practices may be more effective than investments in natural 
capital (e.g., higher-quality riparian buffers) at regulating 
water quality.

Define the role of technology and nature in the provision of services 
at multiple scales. Other capitals can substitute for some ES 
locally, but may fail to compensate for a widespread, global 
decline in ES provision (Raudsepp-Hearne et  al. 2010). 
Large-scale interventions may also have secondary conse-
quences that undermine ES resilience. For example, dikes 
constructed to regulate flooding can create a false sense 
of security, encouraging development in previously flood-
prone areas and leading to greater consequences should a 
flood occur that is larger than the dikes are designed to han-
dle (Vis et al. 2003). Although other capital can potentially 
substitute for some provisioning and regulating services, 
most cultural services depend on a genuine experience, 
often relating to a feeling of wilderness or existence of areas 
without human interference, which is impossible for other 
capitals to replicate (Carpenter et al. 2006). It is also not yet 
understood to what extent the substitution potential of natu-
ral and other capitals is reversible (i.e., how easily one can 
move along the isoclines in figure 3) or where tipping points 
might be reached that would affect the long-term provision 
of ES. Incorporating the effects of technology into ES mod-
els could help understand and quantify the possibilities and 
limits of technological substitution for ES.

Trade and telecoupling. Local demand for ES is sometimes 
met by ES provided in distant places (Seitzinger et al. 2012, 
Liu et  al. 2016). For example, deforestation in the tropics 
has been correlated with increases in agricultural exports 
(DeFries et  al. 2010), suggesting that tropical areas were 
deforested to produce ES benefits to meet demand else-
where whereas the costs, such as losses in water quality, 
were experienced locally. Explicitly linking the ES produced 
in one place to both local costs and distant benefits is a key 
step toward building tools to better understand the costs 
of meeting future demand and who will pay those costs. 
Although some telecouplings are increasingly studied, espe-
cially those related to agricultural production and demand 
(MacDonald et  al. 2015) and deforestation (DeFries et  al. 
2010), models and tools typically do not address the sourc-
ing of distant ES—and the associated nonnatural capital 
inputs (infrastructure development, finances, and technol-
ogy) that facilitate this—unless the model is specially built to 
address questions of telcouplings (Güneralp et al. 2013). The 
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implications for our ability to understand the true costs of 
producing ES include an inability to link benefits to cost, and 
to determine who pays the cost of ES production to meet a 
particular demand.

Incorporating both ecological and social drivers of ES 
provision, clearly defining the impact of using technology to 
substitute for or enhance natural capital in the provision of 
ES, and considering trade and telecoupling are some of the 
advances required to better model the role of nature in the 
resilient provision of ES. Some immediate next steps toward 
realizing these advances include: (a) Undertake research 
to quantify the role of nonnatural capital relative to that of 
natural capital and other ecological factors in the provision 
of ES. (b) Develop a deeper understanding of system-level 
feedback loops that influence the resilience of ES provi-
sion through joint empirical data collection and modeling. 
(c) Assess global connections between ES provision and 
demand to better understand the implications of telecou-
pling for who benefits from, and who pays for, the provision 
of ES.

When is the benefit of added complexity worth  
the cost?
Improving our ability to model ES is critical for improv-
ing ecosystem management, but simply adding complex-
ity to existing tools is not always helpful. The addition of 
complexity can be costly (Schröter et  al. 2015), making 
models harder to test and validate, less certain, more data 
demanding, harder to explain to end users, and harder to 
share within the academic community (Voinov et al. 2014). 
Indiscriminately adding complexity to ES decision-support 
tools could result in less clear information than simpler 
approaches if each additional model or parameter brings 
with it more uncertainty than explanatory power. Here, we 
have pointed out cases in which adding complexity may 
be required to make ES tools more useful, reliable, and 
predictive. The challenge is to identify when understand-
ing space–time dynamics, explicitly linking providers and 
beneficiaries, and recognizing potential complements and 
substitutes play an important role in driving ES outcomes in 
a way that is relevant to decisions, and then incorporating 
this complexity into decision-support tools in a way that is 
accessible and clearly communicated.

Some of the advances we have identified—such as mov-
ing beyond LULC as a proxy, including multiple time steps, 
mapping beneficiaries, or expressing different forms of 
value—are low-hanging fruit that can be incorporated into 
current tools by changing parameters but not necessarily 
the model structure. Other advances, such as incorporat-
ing beneficiaries into ES decision-support tools, are more 
complex and may require a different model structure—in 
this case, one that includes a new feature: beneficiaries of 
ES provision. Some advances are not yet ready to be incor-
porated into tools at all; here, we might aim for conceptual 
rather than instrumental uses of knowledge (McKenzie et al. 
2014), building understanding among decision-makers that 

feedbacks exist or for which components of the system they 
are most important rather than expecting to precisely pre-
dict the quantity of ES provided after perfectly accounting 
for feedbacks. The final frontier identified here, the interplay 
between different capitals in the provision of services and 
its effects on the resilience of service provision to stressors, 
requires deeper scientific understanding before incorpora-
tion into either instrumental decision-support or even into 
our conceptual understanding of service provision.

There is increasing consensus that to adequately represent 
social–ecological systems, we must embrace, not ignore, 
complexity (Topping et  al. 2015), and different approaches 
to modeling may be warranted. Over the last decade, com-
putational modeling of agent-based complex systems has 
matured (Grimm and Berger 2016), and such approaches 
have typically succeeded through replicating existing models 
rather than starting from scratch (Thiele and Grimm 2015).

The question of how useful off-the-shelf or one-size-fits-
all tools can really be to decision-makers remains open. Our 
current challenges demand solutions that can match the pace 
and scale of environmental change today, but creating useful 
models or tools requires long-term collaboration by teams 
that combine different sets of academic expertise with a vari-
ety of types of local policy and practical knowledge (Clark 
et al. 1979, Akçakaya et al. 2016). This does not necessarily 
mean that models co-produced by scientists and decision-
makers cannot successfully transition to more generalized 
tools. In fact, such a combination of different knowledge, 
perspectives, and worldviews typically results in better mod-
els, more accessible tools, and ultimately, information that is 
considered more legitimate by decision-makers (Reed et al. 
2013, Rosenthal et al. 2015). The co-production of models 
and tools is not without significant challenges, including 
balancing differing perspectives on what the important 
problems are, integrating different types of knowledge and 
conflicting methodologies, and avoiding relying so much on 
detailed local knowledge that the model is irrelevant in other 
contexts (Lang et al. 2012). However, when done well, this 
process can help scientists and practitioners jointly define 
socially relevant questions, enhance rather than duplicate 
work, reduce unintended consequences of research, and 
accelerate implementation of research results into practice 
(Davies et al. 2015).

Conclusions
Decision-makers around the world are looking to the ES 
framework to help make better decisions about the environ-
ment. First-generation ES decision-support tools have made 
substantial progress advancing scientific understanding of 
when, where, and how nature matters for human well-being 
but are still unable to fully answer many of the complex 
questions decision-makers are facing. Although we high-
light three different frontiers where we see opportunities to 
improve current tools, it is important to recognize that these 
frontiers do not stand alone but are in fact highly inter-
related. Advances in one frontier will likely help advance 
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others, and the most valuable insights gained from ES tools 
may happen at the intersections of these frontiers. For 
example, better incorporating other capitals into ES models 
may also aid in quantifying beneficiaries’ demand for ES and 
where they are produced in space. Working to advance these 
three frontiers will not only lead to tools that better meet the 
needs of diverse decision-makers but may also lead to new 
insights and novel approaches for the management of ES and 
complex social–ecological systems.
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