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H I G H L I G H T S G R A P H I C A L A B S T R A C T
• Limited Earth observation (EO) prod-
ucts are used in ecosystem service as-
sessments.

• We identify challenges and solutions to
using EO products in ecosystem service
models.

• Technical challenges must be addressed
systematically by data and model pro-
ducers.

• Solutions applicable across models ad-
dress challenges stemming from model
structure.

• EO and data fusion offer opportunities
to reimagine assessment of ecosystem
services.
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The benefits nature provides to people, called ecosystem services, are increasingly recognized and accounted for
in assessments of infrastructure development, agricultural management, conservation prioritization, and sus-
tainable sourcing. These assessments are often limited by data, however, a gap with tremendous potential to
be filled through Earth observations (EO), which produce a variety of data across spatial and temporal extents
and resolutions. Despite widespread recognition of this potential, in practice few ecosystem service studies use
EO. Here, we identify challenges and opportunities to using EO in ecosystem service modeling and assessment.
Some challenges are technical, related to data awareness, processing, and access. These challenges require sys-
tematic investment in model platforms and data management. Other challenges are more conceptual but still
systemic; they are byproducts of the structure of existing ecosystem service models and addressing them re-
quires scientific investment in solutions and tools applicable to a wide range of models and approaches. We
also highlight newways in which EO can be leveraged for ecosystem service assessments, identifying promising
new areas of research.Morewidespread use of EO for ecosystem service assessment will only be achieved if all of
these types of challenges are addressed. This will require non-traditional funding and partnering opportunities
fromprivate and public agencies to promote data exploration, sharing, and archiving. Investing in this integration
will be reflected in better and more accurate ecosystem service assessments worldwide.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Human dependence on natural systems has frequently been
overlooked in decision-making across sectors (Guerry et al., 2015;
Rieb et al., 2017; Ruckelshaus et al., 2015). Increasingly, however, both
public and private sector decisions strive to account for nature's contri-
butions, including food provision, regulation of freshwater, pollination,
and opportunities for recreation; these are often referred to as
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ecosystem services (Díaz et al., 2018; TEEB, 2010). Despite these inten-
tions, assessment of ecosystem services in decisionmaking remains lim-
ited (Guerry et al., 2015; Rieb et al., 2017). We attribute this to two
critical barriers (Fig. 1). First, the scale of decision-relevant information
is often mis-matched with existing research and assessment tools. Re-
search quantifying ecosystem services is frequently based on empirical
field data, biophysical modeling, economic assessment, or surveys un-
dertaken at the site scale. Using the resulting locally based ecosystem
service models in new locations or at different scales requires parame-
terization, calibration and validation that is often hindered by lack of
data. Second, evaluating not just the production of ecosystem goods
and services but also the benefits that accrue to specific and relevant
beneficiaries is challenging. Most studies of ecosystem services report
biophysical values (e.g., tons of sediment retained by vegetation or
changes in nutrient discharge) without linking to costs, emotional reso-
nance, health, or safety — information crucial for decision making
(Brauman, 2015). Evaluating benefits requires information on human
use of ecosystem services, human vulnerability, and access to substi-
tutes, information that biophysical scientists may not have and which
is time and labor intensive to collect (Wolff et al., 2015).

Earth observations (EO), collected via remote sensing as well as in
situ data, include imagery or raw data (e.g., radar or satellite imagery)
as well as products derived through substantial processing
(e.g., precipitation, chlorophyll content inwater). These data have enor-
mous potential to improve ecosystem service-based decision making,
which frequently requires up-to-date information that is globally com-
parable but locally relevant, because they provide data that are uniform
over large areas, available at regular time intervals, and relatively low
cost or even free (Cord et al., 2017; Pettorelli et al., 2017). In addition,
EO have the potential to improve parametrization of ecosystem service
models by providing relevant biophysical data and through fusion
with census and other statistical information to provide information
about the beneficiaries of ecosystem services. Recent reviews have
highlighted opportunities to use EO in ecosystem service assessment,
including providing summaries of satellite sensors and associated prod-
ucts that could be used to assess specific ecosystem services (see lists in
Fig. 1. Opportunities for Earth observations to improve ecosystem service assessments. Ecos
ecosystem service supply and demand. Technical and conceptual barriers remain to creating
transferable across geographies. Earth observation data may reduce these barriers by providing
Andrew et al., 2014; Ayanu et al., 2012; Pettorelli et al., 2017; Xiaoming
et al., 2010). The potential value of EO for ecosystem service assessment
is also highlighted by several governments and intergovernmental or-
ganizations, which have established initiatives to include EO in ecosys-
tem service science (Table 1).

Despite these efforts, the use of EO products in ecosystem service as-
sessments is limited in both number and variety. As of 2013, roughly 5%
of the peer-reviewed ecosystem service literature integrated remote
sensing and ecosystem services (De Araujo Barbosa et al., 2015), and
the EO products used were mostly limited to land use/land cover
(LULC) datasets. To a lesser extent, studies used vegetation indices, dig-
ital elevation models (DEMs), and surface temperature (Cord et al.,
2017; De Araujo Barbosa et al., 2015; Eigenbrod et al., 2010). Given
the potential and simultaneous lack of implementation, it is clear that
hurdles to integrating EO into ecosystem service assessment exist and
must be addressed if EO is to be used more extensively.

Here, we identify key challenges and opportunities for widespread
EO uptake in ecosystem service assessments. These challenges and op-
portunities were identified through a series of workshops (Jan–Jul
2018) bringing together EO scientists, ecosystem service researchers,
ecosystem service model users, and decision makers. We delineate
where in the process of ecosystem service assessment EO might be
used, then lay out a suite of associated challenges.We differentiate tech-
nical challenges that require systematic investment in model platforms
and data management from conceptual challenges requiring scientific
investment to provide solutions and tools relevant across applications.
Finally, we highlight frontiers in ecosystem service assessment enabled
with EO.

2. Using EO in the process of ecosystem service assessment

2.1. Ways EO can be integrated in ecosystem service modeling

Assessment of ecosystem services includes quantifying the current
and future supply of benefits from nature as well as human use of
those benefits (often referred to as “demand” in ecosystem service
ystem service models have been applied across scales, from local to global, to quantify
models that effectively integrate social and biophysical systems that are comparable and
newways tomeasure ecosystem service drivers that are consistent across time and space.



Table 1
Examples of initiatives aiming to include EO in ecosystem service science.

Target Initiatives

Creating EO products for measuring
and monitoring ecosystem
services

Group on Earth Observations (“GEO”, 2018)
ECOPOTENTIAL (European Union, 2018)
Global Pulse (UN, 2018)

Supporting the use of EO data for
ecosystem service assessments

Earth Observation for Development (ESA,
2018a)
SERVIR Global (USAID, 2018a)
SERVIR-Mekong, (USAID, 2018b)

Identifying research priorities in EO
for ecosystem service applications

Earth Observations for Ecosystem Valuation
(ESA, 2018b)
Earth Observations for Ecosystem
Accounting (EO4EA, GEO, 2017)
National Academies of Sciences,
Engineering, and Medicine's decadal survey
(NASEM, 2018)
Europe's Knowledge Innovation Project on
accounting for natural capital and ecosys-
tem services (European Commission, 2018)
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literature). Scientists estimate the supply of an ecosystem service with
tools ranging from proxy-based models, such as those that associate
land use categories (e.g., forest) with certain levels of a service
(e.g., biomass production) (Jacobs et al., 2015; Ponette-González et al.,
2015), to process-based or mechanistic models (e.g., crop growth)
(Bruins et al., 2017; Qiu et al., 2018a; Tallis and Polasky, 2009). Demand
for ecosystem services, which integrates preferences and values as well
as direct use, is less commonly assessed. A combination of approaches
are used to estimate demand, including empirical methods like surveys,
participatory research to capture values and preferences, inferred de-
mand (e.g., travel costs associated with specific amenities, cost of irriga-
tion or water treatment as an indication of water demand), and expert-
based approaches (Bockstael et al., 2000; Wolff et al., 2015).

In the creation of models of ecosystem service supply and demand,
EO can be used in a variety of ways (Table 2). Currently, most ecosystem
service supply models are based on thematic LULC maps, often derived
from remotely sensed surface reflectance (Cord et al., 2017). Instead,
models could use continuous variables from EO products that are
more closely tied to ecosystem functions of interest; for example, Leaf
Area Index (LAI) has been incorporated in mechanistic models to ap-
proximate air quality regulation (Braun et al., 2018). An emerging
trend is the use of EO products for quantifying ecosystem structure
and functional traits, such as vegetation height and leaf dry matter con-
tent, which are better indicators of biomass production than simple
cover-based proxies (Díaz et al., 2007; Lavorel et al., 2011). There is
Table 2
EO opportunities for ecosystem service assessments.

Use type Example question

Create ecosystem service production
functions

How accurate are ecosystem service
assessments?

Drive ecosystem service production
functions

What is the LULC and where is LULC
change happening that could affect
ecosystem service supply?

Create ecosystem service demand
functions and inform valuation
studies

What alternatives do people have to the
ecosystem services of interest?
How are people using an ecosystem service
of interest?
To what extent are people's livelihoods
impacted by changing/changes to
ecosystem services?
How far do people travel to access certain
ecosystem service amenities?
Where does ecosystem service demand
occur?

Drive ecosystem service demand
functions and inform valuation

How is ecosystem service demand
changing over time and space?
also tremendous potential to use EO for calibration and validation of
existing or new ecosystem servicemodels. On the demand side, ecosys-
tem service models could be created using EO products representing
populations and demographics, which representwhere and howpeople
benefit from ecosystem services (Watson et al., 2019). For instance, EO
have recently been used to locate human settlements (Elvidge et al.,
2017) and to estimate characteristics including social groups and pov-
erty (Watmough et al., 2019; Wurm and Taubenböck, 2018). Poverty
can then be used as a proxy for vulnerable populations that rely more
heavily on ecosystem services such as access to fresh water and food
production.

EOproducts can also be used to drive ecosystem servicemodels, pro-
viding forcing data and informing parameters. Inputs critical to model-
ing biophysical processes, such as precipitation and elevation, are
globally available EO products, and these could be used to complement
and extend local gauge data (Pasetto et al., 2018). Parameter coefficients
in ecosystem service models are typically derived from field studies or
literature review but could be obtained through statistical regressions
of in situ information with remotely sensed data (Ayanu et al., 2012).
For example, estimates of cloud water interception could be related to
and then predicted from canopy density instead of simple absence or
presence of forest in cloudy sites (Brauman et al., 2015; Ponette-
González et al., 2015). The use of EO data to quantify how demand for
ecosystem services varies over space and time is limited, representing
a frontier for ecosystem services modeling.

2.2. Opportunities and roadblocks for EO in ecosystem service decision-
support tools

As ecosystem services increasingly inform planning, policy, and de-
cision making (Keeler et al., 2012; McKenzie et al., 2014; Wood et al.,
2018), substantial effort has gone into creating accessible decision-
support tools to aid assessment. A variety of decision-support tools
exist (Bagstad et al., 2013; Grêt-Regamey et al., 2017), including Inte-
grated Valuation of Ecosystem Services Tradeoffs (InVEST, Sharp et al.,
2014) and Artificial Intelligence for Ecosystem Services (ARIES, Villa
et al., 2014). These tools are widely used in both practice and research
to evaluate the impacts of infrastructure development (Arcidiacono
et al., 2016; Langridge et al., 2014; McKenzie et al., 2014; Ruckelshaus
et al., 2015), agriculturalmanagement (Butsic et al., 2017), conservation
and restoration prioritization (Mandle et al., 2017; Zhang et al., 2016),
flood mitigation (Watson et al., 2016), policy assessment (Qiu et al.,
2017), and sustainable sourcing (Chaplin-Kramer et al., 2017).

In general, these tools integrate a suite of ecosystem service produc-
tion functions and ingest biophysical input data (currently in raster, vec-
tor, and tabular format) to derive ecosystem service supply (Fig. 2). Built
for usability, decision-support tools currently have limited flexibility for
incorporating EO products. Users also frequently apply these tools with-
out calibrating or validating the outputs to a specific site (Ruckelshaus
et al., 2015). Ensuring that decision-support platforms can make better
use of EO is perhaps the most promising way to integrate EO into eco-
system service assessmentmore broadly. Below, we summarize several
challenges and opportunities for doing so.

3. Technical challenges to using EO in ecosystem service assessment

Any ecosystem service assessment using EO products is likely to face
technical challenges that are systematic byproducts of data types,model
structure, and data and model management architecture. Such chal-
lengesmay be overcomeby a skilled individual or teamwith knowledge
of EO data and computing support; this is demonstrated by the more
frequent use of EO in ecosystem service assessments in developed
countries with resources for data acquisition, data processing,
cyberinfrastructure (e.g., cloud computing, high speed internet), and
technical capacity (De Araujo Barbosa et al., 2015; Grêt-Regamey
et al., 2017). These technical barriers must systematically be addressed



Fig. 2. Illustration of a standardmethod to estimate ecosystem services. Examples of commondata sources used in ecosystem service assessments and how Earth observations can be used
in the process.
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by data producers and model developers to substantially increase the
use of EO in ecosystem service assessments. Though many of these is-
sues have been raised by other authors (Cord et al., 2017; Pasetto
et al., 2018; Turner et al., 2003), we highlight them here because they
remain major barriers and we emphasize new approaches to overcom-
ing them.
3.1. Knowledge of data and data limitations

Many people assessing ecosystem services have little or no training
using EO products (Cord et al., 2017; Pettorelli et al., 2014; Turner
et al., 2003), and technical training workshops, though effective, have
limited ability to scale. As a result, potential users of EO data may have
limited awareness of the range of available products, and once they
identify potentially useful data they may be unable to evaluate the ben-
efits and limitations of competing products. For instance, users may be
unable to assess whether to use rainfall data from the Climate Hazards
Group InfraRed Precipitation with Station (CHIRPS) or the Tropical
Rainfall MeasuringMission (TRMM) orwhen to pick vegetation proper-
ties from the normalized difference vegetation index (NDVI) or the en-
hanced vegetation index (EVI). Analystsmay also be reluctant to use EO
products without knowing how accurate they are locally (Schaeffer
et al., 2013), a particular challenge in regions where field data do not
exist or are difficult to obtain (Seppelt et al., 2011), the exact places
where EO data products are potentially most appealing.
To address data discoverability issues, data providers have begun de-
veloping data sharing platforms (e.g. Giovanni, Acker and Leptoukh,
2007, Google Earth Engine API, Gorelick et al., 2017, Socioeconomic
Data and Applications Center, SEDAC, CIESIN, 2018a, and NASA's Dis-
tributed Active Archive Centers, DAACs, NASA, 2018a), which ecosys-
tem service decision support tools could link to directly. To help users
discern among products, data platforms could include EO metadata
with tags like, ‘temporally aggregated data,’ or ‘modeled data.’ This
type of enhanced metadata featuring semantic annotations would be
particularly useful for non-expert users, ensuring better topical and spa-
tiotemporal match between disparate datasets, improving consistency
in interpretation, helping reduce language barriers, and making EO
data more findable, accessible, interoperable, and reusable (FAIR,
Wilkinson et al., 2016). To promote detailed metadata, agencies and
other data providers would need to institutionalize it as an expected
practice (e.g., U.S. Geological Survey, USGS, and Oak Ridge National Lab-
oratory, ORNL). EO product developers could also provide consensus or
ensemble EO data products (e.g., Tuanmu and Jetz, 2014).

3.2. Capacity to process data

Preparing an EO product for use in an ecosystem servicemodel often
requires substantial data processing. EO products are available in awide
range of formats (Yang, 2006), including data compression (necessary
when EO products are archived), which can be a barrier to novice
users (Sivanpillai, 2008). High resolution data are frequently provided
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in the form of raw imagery that requires manipulation by the user. An-
alysts also often need to process EO products with different spatial res-
olutions (e.g., integrating 500 m LULC, 30 m digital elevation models,
and 8 km climatic variables) and temporal resolutions (e.g., static,
daily, annual). For example, an ecosystem servicemodelmay call for av-
erage seasonal values of potential evapotranspiration, a product that is
delivered daily, so technical and data processing capacity are needed
to manipulate data. Recent advances in cloud computing platforms
(e.g., Google Earth Engine API, Gorelick et al., 2017, and NASA NEX,
Nemani et al., 2011) are reducing the data processing burden for users
but require good programming skills and stable internet access. Data
that are pre-processed by EO delivery platforms or ecosystem
service decision-support tools will likely see wider uptake. This is
already beginning to happen, as decision-support tools and modeling
platforms have adapted to incorporate simple data conversion tools
(e.g., Moderate Resolution Imaging Spectroradiometer, MODIS,
Reprojection Tool to convert projections and data formats, Dwyer and
Schmidt, 2006), work with data of different spatial resolutions and pro-
jections (e.g., ARIES and Dinamica EGO, Soares-Filho et al., 2013), and
serve harmonized time-series data (e.g., NASA MEaSUREs - Making
Earth System Data Records for Use in Research Environments, NASA,
2018b). Automated data processing is vital for widespread integration
of EO products into ecosystem service modeling.

3.3. Access to data and research results

Once ecosystem service analysts have identified a useful EO product
and have the capacity to process it, they may still be unable to access it.
Though many remotely sensed EO products, including those from
MODIS (250 m+), Landsat (30 m), and Sentinel's Ocean Land Color In-
strument (OLCI, 300m), are freely available, EO data at finer resolutions
(b3 m) can be expensive to obtain (Schaeffer et al., 2013). While many
assessments can be done at coarser resolutions, high resolution data are
important for precise assessments, such as delineating urban canopies.
Data producers could collaborate with public agencies to make EO
data and products available at low or no cost for non-commercial re-
search purposes. Since Landsat archives were released for free to the
public, there has been a dramatic uptake and use of the data worldwide
(Engel-Cox et al., 2004; Popkin, 2018; Wulder and Coops, 2014).

Data accessmay also be limited by restricted use permissions or lack
of public availability, particularly derived data products that are not
available in data archives. Many new EO products are generated
through one-off analyses that are novel (and therefore seen as worthy
of publication) but result in data products that quickly becomeoutdated
or that cannot be regenerated due to technical and resource limitations.
Producing regularly updated EO products requires ongoing funding to
operationalize such products and to allow for algorithm and product
improvement to meet the continually evolving needs of end users.
This does not align with traditional time-limited calls for research inno-
vation, yet in the absence of such funding, the ecosystem services and
broader geographic science community loses the value created by initial
research outputs. Public-private partnerships may offer a path to data
continuity by combining cutting-edge research conducted at public in-
stitutions, or in partnership with private corporations, with technical
capacity and dedicated maintenance. One example is Climate Engine
(Huntington et al., 2017), a partnership between the University of
Idaho and Google to create a cloud platform that allows easy
reprocessing of climate datasets for researchers.

4. Conceptual challenges to integrating EO products in ecosystem
service assessment

There are a range of conceptual and systematic challenges to using
EO products in the current generation of ecosystem service models
that are generally not unique to a specific data type or model. To avoid
reinvention in each subsequent analysis, ecosystem service analysis
and associated decision support tools should invest in systematic solu-
tions. Here, we discuss three types of challenges that apply to a range
of ecosystem service models and EO data.

4.1. Moving from categorical to continuous conceptualization

Many ecosystem service modeling tools (e.g., InVEST, ARIES) rely on
the categorical representation of LULC to predict the supply of an eco-
system service via a production function (reviewed in Seppelt et al.,
2011; Tallis and Polasky, 2009). These models thus estimate a set pro-
duction of an ecosystem service from any particular LULC category.
For example, the InVEST carbon storage model estimates carbon se-
questration in a landscape by assigning an average biomass value, de-
rived from literature review of plot measurements, to each LULC type
(Fig. 3, Sharp et al., 2014). This ignores the spatial heterogeneity of
aboveground biomass within LULC types caused by root depth, nutrient
availability, slope, climate, soil compaction, and erosion (e.g., Castanho
et al., 2013). Calculating biomass with EO has been challenging, but
new sensors and techniques are improving the accuracy of measure-
ments (Baccini et al., 2017; Saatchi et al., 2011), and new products are
becoming available online (e.g., Global Forest Watch, GFW, 2018). Sim-
ilarly, inmost ecosystem servicemodels, variability within a pixel is not
considered, an error that generally becomes progressively worse at
coarser spatial resolutions (e.g., percent of imperviousness or percent
of agricultural land, Ramankutty et al., 2008). However, properly ac-
counting for spatial heterogeneity is critical for an accurate estimate of
ecosystem service supply (Adams et al., 2018; Eigenbrod et al., 2010;
Ponette-González et al., 2015), and EO products hold potential to help
do so because they are more spatially and temporally continuous than
a derived LULC map. However, most ecosystem service models are not
currently set up tomake use of this information. Updatingmodels to ac-
commodate spatial heterogeneity and within-pixel variability in EO
data is a near-term priority.

4.2. Improved estimates of production function parameters

In ecosystem service models, biophysical supply functions rely on
static parameters or coefficients distributed using spatially explicit
data (e.g., precipitation, slope, biomass). For example, the parameter
“C-factor” for retention of sediment by vegetation used in InVEST
(Sharp et al., 2014) is currently derived from existing field studies that
are often remote from the study region. EO data could allow reasonable
extrapolation of these model parameters from “known” to “unknown”
geographic regions based on globally distributed EO data and existing
local parameter sets to construct predictive relationships via regres-
sions. To make this information transferable across studies, ecosystem
service tools would need to incorporate the calculation of parameter
prediction relationships in their platforms.

4.3. Scenario assessment

Most decision contexts consider a range of plausible outcomes (sce-
narios) when implementing resource-management practices
(Carpenter et al., 2006). While EO input data can capture critical infor-
mation about the world as it is, these data need adjustment to account
for different potential trajectories of change in the future. For example,
an ecosystem service model might incorporate the effects of changes
in global temperatures on vegetation productivity (IPCC, 2014) and
thus on carbon sequestration. If an EO-derived vegetation index such
as NDVI is used in the model to estimate carbon sequestration,
then the analyst must find a way to link changes in vegetation produc-
tivity to changes in NDVI under a certain scenario, which is not
straightforward.

Another example is the challenge of creating scenarios based on
changes in LULC. In the current generation of ecosystem service
decision-support tools, the analyst provides a current and future LULC



Fig. 3. Example of input variables used in different ecosystem service models and the possible substitute obtained from Earth observations.
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map and certain values (e.g., carbon storage) are assigned to each LULC
type. If the analyst incorporates an EO product instead, such as EO-
derived carbon storage, they can easily calculate carbon storage in the
current landscape. However, the EO data cannot be used directly to
evaluate scenarios (e.g., converting forest to agriculture, putting in
new roads); instead, carbon storagewill be simulated through statistical
or process-based modeling to properly assess future carbon storage
under the scenarios of change. This challenge will arise for every user
until it is systematically addressed within ecosystem service decision-
support tools. In the absence of a systematic solution, users are likely
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to revert to look-up-based parameter values directly linked to produc-
tivity or LULC.

5. Frontiers for advancement in ecosystem service assessment
through novel uses of EO

Some of the challenges described above may be obviated by devel-
opment of new data, methods, and models. These will be developed
not by finding ways to integrate EO products into existing ecosystem
service models and tools but by developing entirely new ways to mea-
sure and model ecosystem services that integrate EO products from
the first stages of model conceptualization and development (Fig. 2).
Many of these new models will be built from data fusion products that
combine traditional EO data sources such as satellites and radar with
other data sources including social media, mobile phones, and citizen
science.

5.1. Improved modeling of demand

Understanding, modeling, and assessing demand for ecosystem ser-
vices remains limited (Wolff et al., 2015). Traditional methods for eval-
uating demand are often labor intensive and, depending on the scale of
analysis, could require direct interaction through interviews or surveys
with potential ecosystem service users at social scales ranging from in-
dividuals to households, communities, and beyond (Kenter et al., 2015;
Wolff et al., 2015). EO products provide exciting potential to quantify
demand in new ways (Ayanu et al., 2012). For example, EO can supple-
ment incomplete or outdated non-EO demographic data, which may
only be available quarterly, annually, or with a long lag-time between
data collection and publication (Fig. 3). Surveys of economic well-
being and inequality based on asset indicators like building materials
(McKenzie, 2005) have been updated using EO data to identify roof ma-
terial types in Uganda (UN, 2018). New ways to quantify non-material
ecosystem services such as identity and experiencemay also be possible
with EO data fusion products. Researchers have developed biophysical
indicators of some non-material ecosystem services (e.g., Bieling and
Plieninger, 2013; Hernández-Morcillo et al., 2013), and EO products
could be used to scale-up these approaches or apply them in new re-
gions. For example, sacred sites or large-scale ecosystem-related and
culturally significant ceremonies (or their physical footprints) could
be identified using EO data, or specific biophysical features could be as-
sociated with non-material ecosystem services and EO used to locate
those features across the landscape.

Data fusion products hold particular promise for assessment of eco-
system service demand. For example, a number of new, widely used
products are based on “nighttime lights” from the Visible Infrared Imag-
ing Radiometer Suite (VIIRS, Elvidge et al., 2017). This nightlight prod-
uct, in combination with census data, was used to generate global
datasets of settlements and to identify urban and rural areas (CIESIN,
2018b) as well as to disaggregate administrative unit-based population
and demographic survey data into a gridded format (Sorichetta et al.,
2015). Other work combines census, survey, satellite, social media,
cellphone, and other spatial datasets to generate world population
gridded maps (e.g., WorldPop, Tatem, 2017). To better represent local
communities, researchers have used population data disaggregated to
the EO-derived settlement level (Amani et al., 2018; Ma et al., 2019).
A suite of EO products have been combined with other socioeconomic
data to map poverty at a fine scale (Jean et al., 2016). This could help
to delineate ecosystem service beneficiaries more vulnerable to future
environmental or socioeconomic changes. Emerging applications ofma-
chine learning/artificial intelligence (AI) algorithms may also be useful
in identifying landscape characteristics such as the location of specific
consumers of ecosystem services (e.g., residential areas, specific indus-
tries, access points like harbors and docks) to more comprehensively
and spatially map and model demand. For example, machine learning
has been applied to estimate firewood use in South Africa (Willcock
et al., 2018) and to estimate the demographicmakeup of neighborhoods
across the United States (Gebru et al., 2017). New data fusion products
could provide information on where people are (e.g., household loca-
tion and density), what they are doing (e.g., transportation habits,
changes in diets, purchasing power), and what they want
(e.g., consuming habits, access to parks), and could therefore be used
to develop new and improved models of ecosystem service demand.

5.2. More direct indicators of ecosystem service supply

EO provides an opportunity to assess the delivery of ecosystem ser-
vices more directly than through production functions (Fig. 2). For ex-
ample, production functions in ecosystem service models might be
bypassed altogether by deriving outputs of interest (e.g., sediment
yield) from EO data products (e.g., detecting particles from surface re-
flectance, Masocha et al., 2017). Similarly, in lieu of calculating water
balance based on measurements of precipitation and evapotranspira-
tion, hyperspectral imagery, radar, or gravity measurements can be
used to directly observe river and floodplain storage, discharge, and
groundwater use (Biancamaria et al., 2016; Hess et al., 2003; Solander
et al., 2017).

In practice, directly measuring some ecosystem services
(e.g., pollination, pest control) is not possible; therefore, many assess-
ments will continue to develop indicators—measurable attributes that
capture important aspects of a system. Modeled on the development
of the Essential Climate Variables (Bojinski et al., 2014), the Group on
Earth Observations Biodiversity Observation Network (GEO BON) de-
veloped the concept of Essential Biodiversity Variables (EBVs), recog-
nizing the need for standardized, harmonized, and measurable
indicators in the ecological and ecosystem service communities
(Pereira et al., 2013). There are now efforts to develop Essential Ecosys-
tem Services Variables (EESVs) and a variety of other bespoke indica-
tors. Better aligning landscape attributes and processes that scientists
and society care about (e.g., productivity, species composition and bio-
diversity, carbon sequestration, ecosystem function, extent of recrea-
tional spaces) with actual observational capacity has the potential to
both increase the use of EO measurements and derived products for
ecosystem service assessment and to improve consistency and compa-
rability across studies.

5.3. Modeling temporal dynamics of ecosystem services

Currently, ecosystem service models are typically used to deter-
mine the status of a certain service at a given time (single model
run) or to estimate changes over time, either via scenarios or retro-
spective analyses (model runs representing at least two points in
time). These models generally are not designed to address temporal
dynamics of driving input data (e.g., weather) or of input data
that dictate parameters (e.g., agricultural land management type de-
termines parameters for water infiltration). However, decision-
makers frequently need to know how ecosystem service delivery
changes over time in a more nuanced way, as well as how tradeoffs
and synergies among ecosystem services may evolve over time
(Qiu et al., 2018b). Information on ecosystem service changes
through time is particularly important to understand time lags,
abrupt changes, threshold effects, and feedbacks in ecosystem ser-
vice management (Rieb et al., 2017) and for setting expectations
about policy effectiveness (Ramirez-Reyes et al., 2018).

The next generation of ecosystem service models could take advan-
tage of EO data for dynamic and even near real-time assessments. These
assessments could be done in a similar fashion to fire mapping (Justice
et al., 2002), forest loss alerts (Hansen et al., 2016), and agricultural
rapid monitoring efforts (Becker-Reshef et al., 2010). This requires con-
tinuity of EO data (e.g., MODIS, Landsat). Therefore, a data integration
and replacement protocol would be required to collect time-series
data for a given variable from multiple sources, like the NASA Earth
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SystemData Records (ESDRs, NASA, 2018c). Given opportunities for ret-
rospective and continuous monitoring of ecosystem services with EO
data, policies that address satellite mission continuity and proper data
distribution and archiving strategies are essential.

EO products also create potential to incorporate temporal changes in
demand for ecosystem services, related to seasonal cultural or religious
events, or over longer time periods (Román and Stokes, 2015). For in-
stance, machine learning algorithms could be used to analyze EO imag-
ery for cultural ES assessment by detecting features of interest in social
media photographs that appear seasonally (Richards and Tunçer, 2018).
The ubiquity of cellphones hasmade longitudinal studies of humanmo-
bility possible (Lu et al., 2016; Phithakkitnukoon et al., 2012;
Provenzano et al., 2018). This enables ecosystem service modelers to
better parameterize models in space and time using likely ranges of
human mobility.

6. Conclusions

While ecosystem services are increasingly considered in decision-
making, the potential for wider application remains substantial. One
promising path forward is to use EO data to run existing ecosystem ser-
vice assessment models, particularly in places lacking resources to
gather and process local field data. While EO are not a perfect solution
for data needs, they have the potential to improve the spatial resolution
of assessments anywhere in the world (e.g., Fig. 3). New EO products
also create an impetus to develop new approaches to assessing ecosys-
tem services that better capture the temporal dynamics of ecosystem
service supply and demand.

As we highlight, EO data products will not be widely incorporated
into ecosystem service assessment until technical challenges of data
awareness, processing, and access are overcome. These must be ad-
dressed systematically and jointly by EO data developers and devel-
opers of ecosystem service decision-support tools. Conceptually
challenging but systematic barriers also need to be addressed, including
adjustment of existing EO data products and ecosystem service models
to facilitate use of continuous data, development of newmodel param-
eters, and integration of scenario analysis. Many of these adjustments
are relevant across different EO products and ecosystem servicemodels,
but there has been little investment in them, in part because model
modifications are not well addressed by traditional funding opportuni-
ties.Wehighlight several promisingpathways for overcoming these key
challenges to advance the integration of EO into ecosystem service
assessments.

The most exciting frontiers in the integration of EO into ecosystem
service assessmentwill go beyondfinding creativeways to feed existing
EO data into existingmodels. EO data products can be used to create im-
proved and new ecosystem service models that advance both our un-
derstanding and assessment processes for the complex human-natural
systems relationships that ecosystem services represent. Addressing
the challenges and opportunities described here will require both sys-
tematic investment and interdisciplinary collaboration and creative
thinking. Feedback from stakeholders and decision-makers will also
be critical in shaping the design of ecosystem service models and data
products in the future.
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