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E C O L O G Y

Time and space catch up with restoration programs that 
ignore ecosystem service trade-offs
Ruonan Li1,2, Hua Zheng1,2*, Patrick O’Connor3, Huashan Xu4, Yunkai Li5, Fei Lu1,2,6,  
Brian E. Robinson7, Zhiyun Ouyang1,2, Yue Hai1,8, Gretchen C. Daily9

In response to extreme societal consequences of ecosystem degradation and climate change, attention to ecolog-
ical restoration is increasing globally. In China, investments in restoration exceeded USD 378.5 billion over the 
past decade. However, restoration programs are experiments that can cause marked unintended consequences, 
with trade-offs across space and time that have undergone little empirical examination. We quantified the long-
term effects of large-scale afforestation for soil erosion and sandstorm prevention in semiarid China. We found 
that soil erosion was notably reduced by afforestation but surface runoff declined significantly, after a time lag of 
18 years, limiting overall benefit. While forest area also increased, forest quality declined, interacting with re-
duced surface water runoff. Crucially, increased forest water consumption accelerated downstream ground-
water depletion, thus intensifying conflicts over water use. The time lags and spatial trade-offs revealed by this 
case study provide critical lessons for large-scale restoration programs globally.

INTRODUCTION
The rapid pursuit of economic development has led to a succession 
of environmental problems, such as water and soil erosion, deserti-
fication, and ecosystem degradation (1, 2). Most of these environ-
mental problems relate to impacts on ecosystems and ecosystem 
services (ESs) (3, 4). In response to these issues, ecological resto-
ration programs (ERPs) have been widely implemented to improve 
important ESs and manage ecological concerns (5–7). In China, for 
example, more than USD 378.5 billion (in 2015 USD) has been 
invested in ERPs from 1979 to 2015, with total annual investment 
increasing steadily with China’s growing economy (8). Today, one-
third of global vegetated lands are currently greening, especially in 
forested regions (9), and over 30 countries have committed more 
than 100 million hectares to forest landscape restoration through 
the Bonn Challenge (10).

These large-scale programs, which aim to improve important ESs 
(e.g., carbon sequestration, soil conservation, sandstorm prevention, 
and flood mitigation), have received worldwide attention. They con-
tribute in multiple ways toward achieving the United Nations Sus-
tainable Development Goals (8). However, adverse outcomes have 
also occurred during ecological restoration, such as heightened con-
flicts over water use (11–16), heralding future risks to large-scale 
sustainable interventions (8). It is vital that the overall effectiveness 
of restoration is assessed on these larger, regional scales. This assess-
ment should consider not only potential economic benefits (as has 
typically been done) but also risks and costs to human communities 

and potential community responses thereto, to ensure successful 
adaptation of restoration priorities and approaches (9).

Typical ERPs tend to focus on improvement of specific ESs, with 
some achieving remarkable results (1, 2, 17). For example, analysis 
of the outcomes of 89 specific ERPs worldwide showed a win-win 
increase in both biodiversity and ES provision (44 and 25%, re-
spectively) (18). Delivery of ESs following the implementation of 
ERPs, restoration may differentially affect the well-being of differ-
ent stakeholders at multiple spatial scales (2, 19). For instance, the 
Three-North Shelter Forest Program, which is the largest such pro-
gram in China, and the Beijing-Tianjin Sandstorm Source Control 
Project have led to desired reductions in local land desertification 
and soil erosion as well as decreases in airborne sand and dust re-
gionally (20). These different outcomes at local and regional scales 
were desired. However, trade-offs often occur when multiple ESs 
(e.g., carbon sequestration and water resource provision) are com-
petitively used by specific-scale stakeholders (21). Emerging studies 
have suggested that these ERPs, when not properly implemented, 
result in unintended ecological and water security concerns (22, 23).

Furthermore, the overall effectiveness of ES restoration is influ-
enced by temporal variation in ecosystem structure and function 
(1, 24). The long-term effectiveness and sustainability of ERPs can 
be understood only by considering the direct and indirect effects of 
restoration on affected ESs at multiple spatial scales, as well as 
through their long-term temporal dynamics (25). These extensive, 
complex, and cumulative impacts of ERPs on multiple ESs remain 
underrecognized (8). This lack of biophysical and social science–
based data and analysis hinders the understanding of forest-related 
ESs and the ability to design implement and evaluate the effective-
ness of ERPs in land-system sustainability (2, 23).

To reveal the complexities of ERPs in informing sustainable land 
use management, we analyzed the spatiotemporal trade-offs involved 
in two large-scale ERPs in China. We focused on the sandstorm 
prevention and water resource provision of the Three-North Shelter 
Forest Program and the Beijing-Tianjin Sandstorm Source Control 
Project in the mountainous area of the Haihe River Basin (HRB) 
(Fig. 1A and sections S1 and S2). We used the revised wind erosion 
equation (RWEQ) to quantify the sandstorm prevention service. 
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To identify the abrupt change point in surface runoff, we used a 
Pettitt test and double-mass curve and applied a Mann-Kendall 
trend analysis of hydrological and environmental factors. We also 
investigated the major driving force contributions of the ERPs and 
clarified the interrelationships among these effects to guide ERP de-
sign and management.

RESULTS
Sandstorm prevention service changes
The primary targets of the ERPs implemented in the HRB were to 
prevent sandstorms and to retain soil (section S2), which are critical 
outcomes for maintaining ESs in semiarid regions (1). Results 
showed that the area of enhanced sandstorm prevention increased 
from 1980 to 2015 in the afforested subbasins, accounting for 
61.45% of the total area. Among the subbasins covered by the ERPs, 
the two subbasins with the largest increases increase in sandstorm 
prevention area were the Yongding River Basin (YRB) and Daqing 
River Basin (DRB), showing increases in the sandstorm prevention 
areas of 69.74 and 67.48%, respectively. Compared to 1980, sand-
storm prevention increased in the afforested regions, except for 
areas northwest of the Luan River Basin (LRB) and Chaobai River 
Basin (CRB) in 2015 (Fig. 1B). That is, soil erosion increased in the 
northern part of the HRB, mitigating the effectiveness of the ERPs 
in the LRB and CRB areas.

Surface runoff changes and drivers
Surface water runoff in all selected subbasins exhibited a downward 
trend (section S3). The subbasins with significant declines in sur-
face runoff (significance, <0.05 and 0.01) were all located in areas 
where ERPs have been implemented. All subbasins located in the 
revegetated areas exhibited abrupt changes in runoff in 1998, as ver-
ified by cross-validation of the Pettitt test and double-mass curve 
(Fig.  2 and section S4). The runoff before and after the abrupt 
change points is shown in Fig. 2, together with abrupt change 
point analysis.

In afforested areas, reference evapotranspiration and precipita-
tion showed a downward trend from 1980 to 2015, while we ob-
served the opposite trend for temperature (Fig. 3A). Before the 
abrupt change in runoff, forest area and forest quality [measured by 
normalized difference vegetation index (NDVI)] both increased 
substantially. After the abrupt change point, forest area expanded 
very slowly, although the ERPs were still in progress. Furthermore, 
forest quality fluctuated greatly and then eventually declined 
(Fig. 3B). In the period of rapid increase in forest area and quality, 
both were significantly positively correlated with actual evapotrans-
piration (Fig. 3C).

Considering the complex impacts of meteorological (i.e., precip-
itation and reference evaporation) and land use factors (i.e., NDVI 
and forest, grassland, farmland, wetland, and artificial land area) on 
surface runoff in the study area, we quantified their relative 
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Fig. 1. Study area and improvements in sandstorm prevention from 1980 to 2015. (A) Study area of HRB with distribution of subbasins and hydrological stations in 
mountainous area. (B) Map showing biophysical change of sandstorm prevention and histogram illustrating proportion of area with enhanced sandstorm prevention for 
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Fig. 2. Surface water runoff before and after abrupt change points in selected subbasins of HRB. For subbasins with abrupt changes in the volume of runoff, the 
blue and orange scatter diagrams represent annual runoff before and after abrupt change year (1998), respectively, and larger red points represent runoff in 1998. For 
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relationships to runoff reduction. Land use patterns explained the 
most variation in runoff (64.15%), of which increases in forest cover 
(45.90% with 25.78% from forest area and 20.12% from forest qual-
ity) and farmland water consumption (18.26% with 10.67% from 
exterior mountainous area and 7.59% from interior) dominated. An 
additional 35.85% of runoff variation was due to reference evapo-
transpiration (Fig. 3D).

Response of vegetation growth and  
shallow groundwater depth
The NDVI for 26.29% of the revegetated area underwent an abrupt 
change in the past 30 years, primarily after 1998. A decreasing trend 
was exhibited in nearly 60% of the abrupt change region, while the 
remaining areas showed an upward trend (Fig. 4A). However, for-
est quality showed completely opposite trends before and after the 
abrupt change point in runoff. Before 1998, forest quality in 34.6% 
of the revegetated area increased significantly and only decreased in 
0.7% of the revegetated area (Fig. 4B, sig. <0.05). After that, the area 
with a significant increase in forest quality halved, whereas the area show-
ing a significant downward trend increased to 33.9% (Fig. 4C, sig. <0.05).

Compared with nonrevegetated areas [Figs.  1A and 5, Ziya 
River Basin (ZRB)], the cumulative relationship between shallow 
groundwater depth in the piedmont plain and surface runoff from 
the revegetated mountainous areas decreased sharply after the year 
(1998), showing abrupt runoff change (Figs. 1A and 5. LRB and YRB). 

This indicates that the reduction in runoff accelerated the decrease in 
shallow groundwater in download areas.

DISCUSSION
As a result of large-scale revegetation programs, vegetation cover-
age and carbon storage have increased in northern and northeast-
ern China (26, 27), effectively reducing the risk of soil degradation 
and erosion and improving soil stability (28). Our case study revealed 
that the sandstorm prevention service has also been enhanced by 
the revegetation programs in the HRB. However, substantial trade-
offs have occurred between the sandstorm prevention service and 
provision of surface runoff during the implementation of the ERPs. 
The sandstorm prevention service has come at a substantial cost for 
basin water yield, with surface runoff downstream primarily bear-
ing the brunt, although not noticed until years later.

The principal factor contributing to surface runoff reduction has 
been the expansion and growth of artificial forests. Forest quantity 
and quality are together associated with 45.90% of runoff reduction. 
To 2015, forest area has increased by 1.05 × 104 km2 in the revege-
tated subbasins. Early stage revegetation (across nearly half a centu-
ry) from ERPs in northern China involves mostly fast-growing, 
monocultural, and nonnative trees (29). Compared with natural 
endemic forests, artificial forests consume 559 to 2354 m3 ha−1 a−1 
of additional water as they grow due to the increase in total canopy 
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evapotranspiration (30), reduction in surface runoff, and alteration 
of water balance (section S5 and fig. S4) (31), which not only de-
plete the water supply but also potentially result in increased re-
gional water conflicts (11, 32).

Two decades after the initiation of various ERPs in the HRB, the 
artificial forests entered the half-mature and mature stages in 1998, 
the period of maximum water consumption (33). In these stages, 
artificial forests generally show a notable increase in evapotranspi-
ration and reduction in surface runoff compared to native forests, 
especially in dry and semiarid climates (23, 34). Consequently, vari-
ations in forest quantity (area) and quality (NDVI) were the primary 
factors related to surface runoff decline in the region. In the revege-
tated subbasins, forest quality showed a severe decline after 1998, 
consistent with previous studies. For example, Fan (35) investigated 
the NDVI in the HRB from 1982 to 2015 and detected a downward 
trend in the upstream parts of the LRB and CRB subcatchments, 
while an overall upward trend was apparent before 2000 in the same 
area (36).

Furthermore, soil water, an important link connecting forest 
evapotranspiration and surface runoff, followed a similar trend. In 
the revegetated regions, 1998 was also the dividing line in soil water 
content variation. Before that, all forest soil water content showed 
an increasing trend, but after 1998, half of the forest area had de-
clining soil water content, most of which was in the north where 
precipitation was already low (Fig. 6). A possible reason for this 
shift is that the rapid increase in forest area and quality exceeded the 
carrying capacity of the relatively limited precipitation, resulting in 
a decrease in surface runoff and accelerated decline in soil water. 
Consequently, the declining water resources inhibited forest quality.

Climate change and agricultural water utilization can also accel-
erate the reduction in surface runoff. As an integrated indicator of 
multiple meteorological factors, such as precipitation, air tempera-
ture, solar radiation, and wind, reference evapotranspiration showed 
the greatest contribution to runoff decline (35.85%), indicating that 
climate change has also significantly increased the uncertainty and 
risk of ERPs. In addition, as agricultural water accounted for 62.5% 
of the total water resource consumption and the consumption rate 
of agricultural water was 77.1% in 2015 in the HRB (37), both up- 
and downstream farmland also contributed to surface water decline 
via direct extraction from streams and groundwater sources (12).

Last, additional human interventions, such as reservoir con-
struction and operation, and social development can also influence 
runoff production. Across long time scales, human activities are a 
secondary factor affecting runoff compared with meteorological 
factors. However, these interventions can affect downstream runoff 
locally or, in the short term, by altering the underlying surface and 
hydrological cycles (38, 39). In this watershed, these factors appear 
to have had relatively small impacts on surface runoff reduction. On 
the one hand, in selected subbasins, large and mid-sized reser-
voirs and dams for local flood control and irrigation have been in 
operation since before 1972, with only one of these (Taolinkou 
Reservoir) reconstructed in 1996 to supply water for a downstream 
city. The reservoir regulates runoff within a year, and the hydrolog-
ical station is located upstream of the diversion channel. Therefore, 
the annual runoff data used for analysis avoided the influence of 
reservoir operation on runoff variation. On the other hand, the ex-
pansion of artificial land and population are not as rapid in this 
mountainous area as in the downstream plain areas because of the 
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terrain and local forest and farmland protection policies (section S5 
and fig. S4) (40).

The pathways affecting runoff decline in the HRB mountainous 
area are complex and even influenced by nonlocal factors at the 
subbasin scale, thus highlighting the necessity of large-scale evalua-
tion of ERPs. Moreover, runoff reduction triggered multiscale con-
sequences. Because of the severe shortage of surface water resources 
in the HRB, groundwater accounts for more than half of the ac-
cessed water, much of which is drawn from shallow groundwater 
sources (41). Recognizing the consequences of groundwater over-
exploitation, the proportion of water from groundwater sources has 
decreased since the late 1990s (42). However, the piedmont plain 

groundwater depth continues to decline, especially downstream of 
revegetated areas. Because surface water is the main source of 
groundwater recharge in the HRB (37), it can be reasonably inferred 
that, on the basis that groundwater still dominates agricultural wa-
ter consumption, upstream runoff reductions caused by revegeta-
tion programs will accelerate the decline in shallow groundwater 
depth in the piedmont plain.

In addition to declines in groundwater depth, other successive 
ecological problems downstream have been induced by runoff re-
duction in the mountainous areas of the HRB. For instance, the 
amount of water flowing into Bohai Bay has decreased markedly, 
with changes in the water-sediment balance reducing the flood 
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and orange dot-dash lines represent forest with soil water change, forest with decreasing soil water, and forest with increasing soil water, respectively. (B) Distribution 
and areal proportion of forest with soil water variation before abrupt change year. (C) Distribution and areal proportion of forest with soil water variation after abrupt 
change year.
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carrying capacity (43). The continuously declining groundwater 
levels have aggravated subsidence in the plain areas and seawater 
intrusion in the coastal areas of the HRB (44). Water conservation 
facilities, used for tide interception and water storage, have also 
destroyed the connectivity in stream networks and habitats for 
aquatic organisms, leading to regional ecosystem degradation in the 
HRB (45).

Last, but not least, on the basis of the degradation that can occur 
following afforestation programs (11), matching afforestation 
species—ideally native—and designs with local hydrothermal con-
ditions is critical for effective restoration. Biodiversity conservation, 
which can provide many other ES benefits, hinges on native plant 
species at the base of the food web. Here, we emphasize the impor-
tance of considering large-scale spatial trade-offs and temporal ac-
cumulation when ERPs are implemented if catastrophic effects on 
ecosystems are to be avoided. These considerations are essential to 
sustain ERPs and improve ecological management and policies, 
which will be of great benefit to ES synergy in China and elsewhere 
across the world.

MATERIALS AND METHODS
HRB and vegetation restoration programs
The HRB, located in mideastern China, has a semiarid/semihumid 
climate, with an annual mean temperature of 0° to 14°C and an 
annual mean precipitation of 547 mm. The mountainous region, 
which has an elevational range of 6 to 2 940 m and an area of 
16.94 × 104 km2, is the main water yield area of the HRB (Fig. 1A 
and section S1). The HRB is a political and economic center. 
With its high-density population and high rate of urbanization, the 
HRB has the highest water resource exploitation among China’s 
river basins and has experienced long-term water resource shortag-
es (37). Years of water supply and demand imbalance have triggered 
a series of problems, including surface runoff decrease, lake and 
wetland shrinkage, groundwater over extraction, water pollution 
exacerbation, and ecosystem degradation (45–47).

Because of the adjoining deserts to its north and west, the HRB 
is frequently plagued by sandstorms (48). To prevent these storms 
and conserve water and soil, the Chinese government implemented 
two vegetation restoration programs. The Three-North Shelter For-
est Program began in the late 1970s, with a 70-year plan (49), and 
the Beijing-Tianjin Sandstorm Source Control Project started in the 
early 2000s. These programs aimed to control sandstorm and soil 
erosion hazards, improve the regional environment, and enhance 
local and regional communities (section S2). Understanding the ef-
fectiveness of ERPs at the junction of arid and semiarid areas is 
particularly important because of the challenge of desert contain-
ment and restoration in dry lands. The mountainous area of the 
HRB is found within the Taihang Mountains. The indigenous vege-
tation is mainly broad-leaf deciduous forest, mixed with coniferous 
forest (49). According to afforestation program data, poplar is the 
major afforestation species, accounting for almost 40% in the area, 
followed by Chinese pine (~30%) and Pinus sylvestris. The other 
species used are deciduous broad-leaf species, such as oak and wil-
low (50). In this study, 15 subbasins in the HRB mountainous area 
were selected. The reservoirs involved in water conservation proj-
ects in the 15 subbasins were built before the 1970s, and effects on 
runoff did not change during the study period. The locations of the 
hydrological control stations in the subbasins are shown in Fig. 1.

Data sources
This study used land use, hydrological, and climatological data 
from 1980 to 2015, as well as NDVI data from 1981 to 2015. The-
matic mapper images used to extract land use were obtained from 
https://glovis.usgs.gov/app?fullscreen=1. The NDVI data were ob-
tained from the National Center for Atmospheric Research (51, 52). 
Hydrological and climatological data were collected from hydrolog-
ical and meteorological stations (Fig. 1A), and meteorological data 
were interpolated by spline function based on the ArcMap 10.1 
platform. Soil data were downloaded from http://www.ncdc.ac.cn, 
and elevation and slope data were extracted from the digital eleva-
tion model of the HRB, obtained from https://earthexplorer.usgs.
gov/. Hydrological data were used for trend analysis of water yield 
in the mountainous area. Land use, NDVI, precipitation, and air 
temperature data were used to explore their influence on runoff 
changes in the study area. Reference evaporation was calculated 
by the Food and Agriculture Organization Penman-Monteith meth-
od (53), as shown in section S8. Land use, soil, and geographical 
data were also used for calculation of sandstorm prevention service 
provision. The actual evapotranspiration dataset, from 1982 to 
2015, was provided by the National Tibetan Plateau Data Center 
(http://data.tpdc.ac.cn), and the soil water dataset from 1982 to 
2014 was provided by the Global Land Data Assimilation System 
(54,  55). The spatial accuracy of all raster data was made consis-
tent at 1 km.

Land use and vegetation quality change
Land use data were extracted from thematic mapper images. Ac-
cording to “Current Land Use Classification” (56), land use was 
classified into six types, including forest, grassland, farmland, water, 
artificial land, and other. In the mountainous area of the HRB, the 
combined area of forest, grassland, and farmland exceeded 85% of 
the entire area, whereas, in the plain area, farmland was the domi-
nant land use type. The NDVI is a comprehensive reflection of veg-
etation type, cover form, and growth status and was used for forest 
quality assessment. For details of land use variation between years, 
please refer to section S5.

Sandstorm prevention service assessment
Wind erosion, one of the three soil erosion pathways, is a key cause 
of land degradation in northern China. Sandstorm prevention refers 
to sand retained in an ecosystem within a certain period (1). Here, 
we used the RWEQ to quantify sandstorm prevention service. The 
RWEQ combines empirical and process modeling and has been ex-
tensively tested under broad field conditions. It estimates sand/soil 
loss at a specific point as a function of several factors, i.e., weather, 
soil erodibility, soil crust, surface roughness, and vegetation cover. 
The RWEQ allows estimation of the maximum wind transport ca-
pacity from an area. For details, please refer to section S6.

Hydrological and meteorological analysis
Mann-Kendall trend analysis was applied for tendency analyses of 
water runoff, temperature, and precipitation in the HRB. This 
method does not require data to follow normal distribution. A Pettitt 
test and double-mass curve were applied for abrupt change point 
identification of surface runoff for cross-validation. In addition, 
to reveal the spatial delivery of water provision services, a double 
cumulative curve method was applied to analyze the relationship 
between shallow groundwater and surface runoff in relation to 
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upstream forest quality. Three monitoring stations with relatively 
abundant records were selected to study the long-term trends in 
shallow groundwater in the piedmont plain of the HRB (Fig. 1A). 
There is a lack of long-term data on shallow groundwater in the 
region, but data are available for the Tangshan (located at the Luan 
River outlet, northern HRB), Beijing (located at the Yongding River 
outlet, central HRB), and Shijiazhuang stations (located at the Ziya 
River outlet, southern HRB). For details, please refer to section S7.

Relative contribution rate of surface runoff reduction
Surface runoff is largely influenced by meteorological and land use 
factors as well as human utilization. Here, Spearman’s rank correla-
tion was first used to analyze the strength and direction of correla-
tions between runoff variation and various influencing factors 
[including precipitation; air temperature; reference evaporation 
(section S8); area of forest, grassland, farmland, wetland, and artifi-
cial land; and NDVI], and to eliminate correlated variables. Multi-
ple linear regression was then used to identify the main influencing 
factors (meteorological and land use). Next, the differences before 
and after the driving force change point were used as independent 
variables in the selected subbasins, while the difference in surface 
runoff was used as the dependent variable. Last, the sum of squared 
deviations from the mean was used to quantify the relative contri-
bution of each main factor using variance analysis (57). For details, 
please refer to section S9.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/14/eabf8650/DC1
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