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A B S T R A C T   

Mapping ecosystem services (ES), including crop pollination by wild insect pollinators, is challenging due to the 
number of variables involved and the spatial-temporal dimensions of their interactions. To enhance the syner
gistic relationship between pollination service and crop yield in agricultural landscapes, a better appreciation of 
the spatial dynamics of pollination service provisioning is needed. Spatially explicit modelling approaches have 
been used to investigate how different land cover types influence the distribution and abundance of wild bee 
pollinators in agricultural landscapes. However, an integrated dynamic and spatial modelling framework is 
needed to address the complexities of pollination supply mapping at the landscape scale. The Artificial Intelli
gence for Environment and Sustainability (ARIES) framework is a collaborative, spatially explicit and integrated 
tool for ES assessment. We applied a set of high-resolution process-based pollination models within ARIES to 
represent landscape capacity to supply pollination by wild bees at the local scale in the Canadian prairies. We 
also developed a systematic approach to perform a global sensitivity analysis by using a surrogate model 
(Gaussian Process Regression) and variance-based sensitivity analysis for the selected uncertain key parameters 
of the model. We modelled pollination dynamics through the mechanistic behavior of native bee guilds, 
including foraging distance, nesting ability, flight activity, the relative importance of bee guilds, and seasonal 
variation of floral resources. We focused on three guilds, bumblebees, sweat bees and mining bees, which 
differed by their nesting habits, floral preferences, and flight distances. We found that over 45% of pollination- 
dependent croplands in our study area lack wild pollination. The global sensitivity analysis revealed the sig
nificance of all key parameters, with seasonal activity across guilds identified as the key driving factors. Our 
results highlight the significance of the ecological role of wild bees in agricultural landscapes and the sensitivity 
analysis underscores the importance of temporal dynamics in ecological modeling and pollination.   

1. Introduction 

Pollination by wild bees as an important ecosystem service (ES) plays 
a crucial role in the sustainability of many agricultural landscapes 
worldwide. It is estimated that 10% (€153 billion) of the global eco
nomic value of food production depends on insect pollination (Gallai 
et al. 2009). Pollination improves yields and leads to higher quality 
crops (Stein et al. 2017), diversifies nutrition (Ellis, Myers, and Ricketts 
2015; Hünicken et al. 2020), and conserves wild plant populations in 
natural landscapes (Blaauw and Isaacs 2014). The dramatic decline in 
wild pollinator populations is due to habitat loss and fragmentation, 
agricultural intensification, and changes in landcover patterns (Potts 
et al. 2010). There is a growing concern about how to manage, protect 

and restore the natural ecosystem services of pollination in modern 
agriculture (Raderschall et al. 2021; Vickruck et al. 2019, 2021) — 
especially in light of increasing demand for food and a resulting 
increased production through agriculture intensification. 

Despite the importance of crop pollination by managed honeybees, 
wild bees can also pollinate crops if sufficient natural habitat is available 
on farms (Kline and Joshi 2020; Perennes et al. 2021; Potts et al. 2016; 
Purvis et al. 2020; Vaughan and Black 2007). In Canada, the estimated 
total annual economic value of honeybee pollination was $2.57 billion 
in 2017 (Agriculture and Agri-Food Canada 2021). In addition, the 
number of beekeepers was recorded to be over 11,700 in 2020 (Agri
culture and Agri-Food Canada 2021). In the Southern prairies of Alberta, 
honeybee pollination accounted for about 50% of seed canola 
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production with the remaining half attributed to wild bees (Agriculture 
and Agri-Food Canada 2017). As native species are, by definition, 
adapted to local environmental conditions, they may perform better 
than introduced species. Furthermore, research has demonstrated that 
wild bees are more efficient pollinators than honeybees (Vaughan et al. 
2007). For example, a global meta-analysis by (Garibaldi et al. 2013) 
found a positive association between wild insect visitation rates and 
enhanced fruit sets. In light of these findings, there is an increasing 
concern to conserve native bees and their habitats (Potts et al. 2016). By 
doing so, dependence on commercial honeybees for crop pollination 
could be reduced. However, a limitation to preserving and managing 
wild bee communities is the scarcity of their habitat in agricultural 
landscapes, thereby limiting the flow of this beneficial ES to farms. 

Investigating the relative potential pollination by different bee guilds 
demonstrates their ecological function in the agricultural landscapes. 
Pollination services by various bee guilds, thus, may vary according to 
their behavior and their interactions with landscape structure. For 
instance, a comparative study of five bee species (Andrikopoulos and 
Cane 2018) on pollination efficacy on raspberry production found 
managed honeybees are the most cost-effective pollinator, while bum
blebees and mason bees could be beneficial for protected cultivation 
systems. Given that various bee guilds have unique nesting and foraging 
behaviours, addressing the scale at which they forage has significant 
ecological implications in agricultural landscapes. For example, most 
native bees in Canada are solitary bees that live only for one year and are 
active for a short time during summer and fall (Agriculture and 
Agri-Food Canada 2013). However, some species like bumblebees are 
social bees and live in relatively large colonies. In addition, bumblebees 
have a longer lifetime than other native bees, and their activity con
tinues until early fall (Agriculture and Agri-Food Canada 2013). 
Considering pollinator behavior in pollination mapping is one way to 
engage with the spatial dynamics of various bee guilds to identify 
pollination-deficient areas that illustrate where pollination service 
provision has not yet met the demand of nearby cropland. 

Mapping pollination is challenging due to the complexities of real- 
world landscapes and their influence on pollinator populations, which 
unlike other ES cannot be directly observed at large scales by remote 
sensing or in situ sensors (Ramirez-Reyes et al. 2019). Presently, a set of 
spatially explicit tools such as Artificial Intelligence for Environment 
and Sustainability (ARIES Villa et al. 2014), Integrated Valuation of 
Ecosystem Services and Tradeoffs (InVEST, Sharp et al. 2014), 
Ecosystem Services Mapping Tool (ESTIMAP, Zulian et al., 2013b) and 
more recently, PollMap (Rahimi et al., 2021) have been developed to 
address some of these pollination mapping challenges. Such tools have 
been used to develop strategies to prevent and alleviate the effects of 
pollinator declines on crop production across landscapes, by generating 
spatial data at appropriate scales. Regarding these mapping tools, ARIES 
is based on integrated ES modelling methodology (Villa et al. 2014), and 
integrates existing ecosystem service models such as pollination using a 
tier-based approach (Martínez-López et al. 2019). Notably, the ARIES 
project is based on a semantic-meta modelling paradigm (Villa et al. 
2017) that by design adheres to the FAIR principles (The four FAIR 
principles: Findable, Accessible, Interoperable, Reusable were intro
duced by Wilkinson et al. (2016) to advance open science through 
improved infrastructure for reusability of scientific data by both people 
and computers.), where semantics provide consistent labeling of 
multidisciplinary data and model elements that are recognizable by the 
computer, while a machine reasoner navigates data and models on 
linked repositories, selects the ones best suited to the given context, after 
which the models are executed and results and provenance information 
returned to the user (Villa et al. 2017). 

The innovative integrated modelling worldview and machine 
reasoning feature in ARIES privilege the interoperability of ecosystem 
service models and datasets through observables, e.g., physical objects 
(a farm), their qualities (crop yield per hectare), the processes (crop 
growth) and events (crop flowering/blooming) which can be directly 

observed in the ARIES modelling platform called K.LAB (a software 
stack for semantic modelling - the process of creating meaning from data 
and computation using a shared worldview- to support users in model- 
data integration through a series of client and server components) 
(The Integrated Modelling Partnership 2021). After semantic annotation 
of datasets, the modelling process in K.LAB begins with observing a 
concept in a user-defined context that requires spatial and temporal 
declaration. K.LAB supports various models from simple functions to 
complex stochastic simulations and GIS raster geoprocessing. For 
example, a model in K.LAB can be a simple land cover classification, 
look-up tables or a complex simulation model. In addition, ARIES pro
vides complex scientific computation, such as through scientific work
flows, thereby increasing the speed, reliability, and customizability of 
the ES assessment process (Torres, Balbi, and Villa 2021; Villa et al. 
2014). 

The novelty of this research lies in its spatially explicit modeling of 
pollination services by different bee guilds, taking into account polli
nator behavior and interactions with landscape structures. Our approach 
considers the nesting and foraging behaviors of various bee guilds, 
rarely considered in most pollination frameworks. We integrate these 
factors within a high-resolution pollinator species model developed 
within the Artificial Intelligence for Environment and Sustainability 
(ARIES) platform with the goal of evaluating the capacity of agricultural 
landscapes to supply wild pollination services. The model captures 
spatial and temporal pollination dynamics that govern complex re
lationships between the landscape and different bee guilds, including 
nesting ability, flight activity throughout the year, seasonal variation of 
floral resources, and relative importance of bee species in a landscape. 
We demonstrate this approach in an agricultural region in the Canadian 
prairies of Manitoba. Our results highlight the importance of addressing 
the scale at which guilds forage and their ecological implications in 
agricultural landscapes. 

2. Methods 

2.1. Study area 

The widespread agricultural intensification in the Canadian prairies 
has posed a significant risk for floral resource diversity and suitable 
nesting habitat for native bee species (Vickruck et al. 2019). We selected 
a sample crop statistical region in the Southern prairies of Manitoba 
(Fig. 1) known as crops Small Area Data (SAD) to test our integrated 
pollination mapping approach at the local landscape scale. SAD in 
Canada subdivides the country’s agricultural regions to provide 
coherent agricultural statistics at the local scale. Manitoba is divided 
into 12 SAD regions. This study is conducted in SAD number 7, corre
sponding to Manitoba’s Census Agriculture Region number 7 with a 10, 
905 km2 area. The average farm size in Manitoba was about 4.8 km2 in 
2016 (Statistics Canada 2016). There are over 1700 farms in SAD 7, and 
oilseed and grain farming (859 farms, 49.5 %) are the most prevalent 
farming type (Statistics Canada 2016). According to the census of agri
culture in 2016 by Statistics Canada, the major crops grown in this re
gion are canola (42.7 %), wheat (38.10%), oat (34.60 %), barley (13.5 
%), and flaxseed (9 %). Canola and flaxseed are the most important 
pollination-dependent crops on the landscape; however, scattered sun
flower and corn farms are also evident and are greatly 
pollination-dependent (Fig. 1). 

2.2. Selecting key pollinators 

Agriculture and Agri-Food Canada (AAFC) (2013) has divided Ca
nadian native bees in agricultural landscapes into different guilds ac
cording to their body size and the foraging distance to collect pollen and 
nectar in nearby landscapes. We conceptualized our model and selected 
three different bee guilds (Bumblebees, Mining bees, and Sweat bees, 
respectively, representing large, medium-sized, and small bees) based 
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on AAFC’s guideline and guild behavior. 
Table 1 shows the parameters used to represent the three major bee 

guilds that we selected to model. We modelled the following behavior 
mechanisms: flight distance, nesting ability in various nesting sites, and 
flight activity throughout the year. We compiled the data for different 
guilds from multiple technical reports for agriculture and pollination in 
Canada and North America (Agriculture and Agri-Food Canada 2013; 
Agriculture and Agri-Food Canada, 2020; Vaughan et al. 2015). 

2.3. Model design within ARIES 

Our guild-based pollination model builds from the mechanistic 
pollination model of Lonsdorf et al (2009) and the ecological production 
function framework (Kremen et al. 2007). The base methodology uses 
landcover data to estimate pollinator nesting suitability and probability 
of floral resources in a landscape by remapping landcover classes. Fig. 2 
demonstrates model steps and provides a general overview of the model 
framework. We used five look-up tables, (1) floral resources, (2) nesting 

suitability, (3) foraging distance, (4) nesting ability, and (5) guild 
importance through the modelling process to map pollination com
plexities resulting from pollinator diversity. A common assumption in 
most current pollination models (Kremen et al. 2007; Lonsdorf et al. 
2009; Schulp, Lautenbach, and Verburg 2014; Zulian, Paracchini, et al. 
2013) is to use landscape suitability to represent pollinator abundance 
and diversity. These models generate a pollinator abundance index and 
a pollinator visitation rate by using landcover data to represent land
scape suitability for the pollination service (Perennes et al. 2021). The 
modeled species richness of pollinators thus may represent a general and 
quantifiable indicator of the potential value of pollination supply for 
crop production. 

Step 1. Landcover Classification: We use high-resolution data of 
landscape context variables, including crop cover types at 30 m reso
lution and run the model with the same spatial resolution. We retrieved 
the annual crop inventory for 2020 from the Open Government data 
portal on the Government of Canada’s website (https://agriculture. 

Fig. 1. The location of the study area, SAD number 7 in Manitoba, Canada is dominated by annual croplands. wheat, canola, soybean, flaxseed, oat and rye are the 
dominant cover types in the landscape (Supplementary Materials, Table 1). The landscape structure in this region is heterogeneous, with much of the remaining 
landcover classified as broadleaf forest distributed mainly in the southern part. Pollination-dependent crops are annotated with an asterisk symbol. The color code 
shows the pollination dependency rate (green: high pollination dependent, orange: moderate pollination dependent, black: little pollination dependent). 

Table 1 
Different selected bee guilds and their behavior components in the pollination model.  

Guilds/ body size and 
species 

Relative Importance in Pollination 
Supply 

Flight Distance/ Foraging Distance 
(m) 

Nesting Ability Seasonal Relative 
Importance of Flight 
Activity 

Ground Wood Stem Cavity Spring Summer Fall 

Large bee (Bumblebees) 0.5 1500 1 1 0.2 0.3 0.3 0.6 0.1 
Medium-sized (Mining 

bees) 
0.3 400 1 1 0.5 0.2 0.2 0.8 0 

Small bee (Sweat bees) 0.2 200 1 1 0.5 0.2 0.2 0.8 0  
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canada.ca/atlas/data_donnees/agr/annualCropInventory/tif/2020/) 
for Manitoba. Agriculture and Agri-Food Canada (AAFC) has been using 
Landsat satellite images since 2009 to produce annual national crop 
inventory (Agriculture and Agri-Food Canada 2020), which also maps 
non-crop landcover types (Fig. 1). The modelling process in the ARIES 
platform begins by making all data sources, including landcover, (1) 
machine actionable, by hosting them on a GeoServer and importing 
them as resources available to ARIES, during which the data are vali
dated and a Uniform Resource Name is generated for each resource and 
(2) semantically annotated, by providing a consistent and unambiguous 
definition of the data content, which allows ARIES to navigate data and 
models to assemble and execute computational workflows (Villa et al. 
2017). 

Step 2. Landscape Suitability: According to the base model (Lonsdorf 
et al. 2009), we assigned two landscape suitability indicators, (1) to map 
floral resource availability and (2) nesting suitability based on expert 
knowledge (Supplementary Materials, Tables 2 and 3). We calculated 
landscape suitability for pollinators (nesting suitability and floral 
availability) based on these two composite indicators. In this study, we 
modified model coefficients of floral resources and nesting suitability 
from the Canadian context according to the literature and a similar study 
conducted in the US (Koh et al. 2016) and consulted with pollination 
experts in Canada. We used new values for non-crop cover types based 
on expert elicitation for Canadian prairies, close to Koh et al. (2016)’s 
numbers (Supplementary Materials, Tables 2 and 3). However, we did 

not change the weights of crop types from Koh et al. (2016) for nesting 
sites and floral resources availability. To benchmark regional-level 
model performance, Koh et al. (2016) did not find much difference be
tween regional coefficients as compared to a model with a single 
national-level set of coefficients. The base model computes pollination 
potential according to the foraging distance of pollinators (Table 1) 
using a decay function. This means that foraging distances of the desired 
pollinator species decline exponentially with distance (Ricketts et al. 
2008). Finally, the model calculates a score for pollinator visits between 
0–1 for a given landscape, where 0 represents the minimum visitation 
rate and 1 shows the maximum visitation rate. 

Step 2.1. Seasonal and Guild Floral Resources Availability: Seasonal 
variation is an important factor in producing a floral resource map as 
flowering resources vary among seasons. Thus, we calculated overall 
flowering availability as a weighted sum across seasons from 0–1 (i.e., 
spring, summer, fall) for various species (Lonsdorf et al. 2009, Table 1). 
We then computed guild-based floral resource maps. Based on the 
availability of floral resources in different seasons and using a look-up 
table (flight activity, Section 2.2), the floral resource map for each 
guild is produced. To consider guild foraging distance in the landscape, 
we used the neighbourhood of each pixel using a GIS function within 
ARIES to aggregate the mean value of floral resources for each guild 
according to their foraging distance (Table 1). 

We first calculate guild floral resource maps by considering guild 
foraging distance using the neighbourhood of each pixel according to 
Eq. 1, where floral resources vary among K seasons. Therefore, the 
overall floral resource maps are calculated as the weighted sum across K 
seasons where the weight (wsk) ∈ [0, 1] shows the relative importance of 
floral resources in season k for species s (Lonsdorf et al. 2009). Ac
cording to pollinator foraging distance, the base model uses a decay 
function to produce floral resource maps. However, we implemented the 
mean value of each cell in the neighbourhood instead of the Euclidean 
distance based on Eq. 1 where FAijsk is the floral resource availability in 
cell i, j for species s in season k (FAijs) ∈ [0,1]: 

FAijs =
1
N

∑K

k=1
Wsk

∑

〈i,j∈Λ〉

FAijsk (1)  

where Λ is a set N of cells located inside the radius of Rs of cell i,j and Rs 
is foraging distance for species s. We conceptualized foraging distance 
for three guilds in the Canadian prairies according to their body size. 
Therefore, Rs in Eq. 1, respectively for large bees (Bumblebees), 

Fig. 2. Pollination model framework.  

Table 2 
Key uncertian parameters for sensitivity analysis.  

Category Parameter Range 

Foraging distance for each 
guild 

Bumblebees 1000 – 2000 m 
Mining bees 350 – 450 m 
Sweat bees 100 – 200 m 

Seasonal relative 
importance of flight 
activity 

Bumblebees Spring 0.24 – 0.36 
Summer 0.48 – 0.72 
Fall 0.08 – 0.12 

Mining bees Spring 0.16 – 0.24 
Summer 0.64 – 0.96 
Fall* 0 (Fixed value for all 

combination) 
Sweat bees Spring 0.16 – 0.24 

Summer 0.64 – 0.96 
Fall* 0 (Fixed value for all 

combination) 

*excluded parameters from sensitivity analysis 
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medium-sized bees (Mining bees), and small bees (Sweat bees) is 
considered 1500 m, 400 m, and 200 m (Agriculture and Agri-Food 
Canada 2013). 

Step 2.2. Guild Nesting Suitability Map: First, landscape suitability 
for different nesting sites (ground, wood, stem, and cavity) is calculated 
using coefficients from the nesting suitability look-up table (Supple
mentary Materials, Table 3). Then, using the guild-specific nesting 
ability look-up table (derived from Table 1), we produced guild nesting 
ability maps as a function of nesting suitability (see Section 2.2 and 
Table 1) in the landscape. Finally, we applied a simple deterministic 
model to normalize landscape suitability values to produce the nesting 
suitability for each guild. 

Step 3. Calculating Guild Bee Abundance: The base model (Lonsdorf 
et al. 2009) combines the floral resource map and nesting suitability 
map to produce the pollinator abundance map. We calculated the bee 
abundance for each guild by multiplying the guild-specific floral 
resource and nesting suitability maps and then normalizing the values 
using a deterministic model. The relative pollinator abundance in each 
nest site is thus estimated between nesting suitability (NSijs ) and floral 
resource availability (FAijs): 

PAijs = NSijs × FAijs (2)  

Step 4. Calculating Pollination Supply Map: To produce the final 
pollination supply map for each guild, we first model the probability of 
visitation by each guild in the landscape according to guild foraging 
range (similar to step 2.1, a mean aggregation of each neighbourhood is 
calculated). Since each guild has different ecological functionality in a 
landscape, we then combine the visitation rate for all guilds considering 
their relative importance in pollination provisioning (Table 1). Finally, 
an overall bee visitation score for wild bees is calculated (Eq. 3) and 
accordingly, the pollination potential hotspots and cold spots are iden
tified by reclassifying in ArcGIS (Fig. 2). We used an area-based 
approach using very high and high classes of final pollination service 
map as hotspots and very low areas as pollination cold spots. 

We calculated pollinator abundance for each guild, and then the 
visitation probability for each guild is computed using Eq. 3 (VSijs) ∈ [0,
1]: 

VSijs =
1
N

∑

〈i,j∈Λ〉

PAijs (3)  

where VSijs is the visitation score for species s. We based the provisioning 
of the pollination service on bee visitation probability according to the 
maximum value of their foraging distance in the landscape. Thus, the 
total pollination potential is the sum of the weighted guild visitation 

score maps. The distance decay function is applied a second time in the 
base model to provide the bee abundance visiting each cell to represent 
pollination supply. Similar to calculating floral resource maps (Eq. 1), 
we modified the base model using an aggregation method to calculate 
guild visitation probability. We based the importance of bee guilds 
(bumblebees: 0.5, mining bees: 0.3 and sweat bees: 0.2) on their 
foraging distance and then multiplied their weight to the guild visit 
score maps (guild pollination supply maps) and normalized the values 
using a deterministic model within ARIES. 

The underlying conceptual structure of the pollination model is 
illustrated in Fig. 2. The final output of the mechanistic pollination 
model quantifies pollination service supply for a given landscape among 
different bee guilds. In this study, we selected three bee guilds (bum
blebees, mining bees, and sweat bees), each with varying foraging dis
tances (Table 1). 

2.4. Sensitivity analysis 

We performed a global sensitivity analysis to identify the key input 
parameters of the pollination model applied in this study. Pollination as 
an ecological process is non-linear inherently. Therefore, we applied 
variance-based sensitivity analysis to capture the nonlinearity of model 
outputs and to further identify influential model parameters in the 
model outputs as well as the interactions among model parameters. A 
variance-based sensitivity analysis usually provides the first-order 
sensitivity indices Si and the total-effect sensitivity indices Ti for the 
uncertain factors of the mathematical model under analysis (Lo Piano 
et al. 2021). As discussed in the literature, computational cost of 
sensitivity analysis is crucial and greatly depends on the number of 
parameters and model evaluations. Various techniques exist for esti
mating sensitivity indices, ranging from sample-based approaches to 
meta-modelling methods, such as employing surrogate models (Lo Piano 
et al. 2021). In this study, we utilized a surrogate statistical model to 
predict the pollination model output based on a set of 40 model obser
vations. More specifically, we employed Gaussian Process Regression 
(GPR; discussed in the subsequent section) to interpolate and predict 
data generated by the pollination model from ARIES. GPR is particularly 
effective when the response surface of interest smoothly maps onto the 
parameter space (Dancik and Dorman 2008). By leveraging GPR, we aim 
to provide a robust, data-driven approximation of the pollination model 
response, thereby enhancing the accuracy of our sensitivity analysis. 

We did not run a sensitivity analysis for the coefficients used from 
Koh.et al (2016) for floral resources and nesting suitability indices of 
different land cover types since in their study, as mentioned in the 
previous section, they did not find much difference of regional vari
ability in the model coefficients when compared to national-level 
coefficients. 

Table 3 
Spatial distribution and comparison of pollination-dependent crops in the landscape and pollination deficit area.  

Crop type Total Area Area in pollination deficit Average Yield (Kilograms per 
hectare) 

Production (Metric 
tonnes) Km2 (in the 

landscape) 
Percentage km2 Percentage of total 

cropland 

Canola*** 2002 18.36 630.88 31.51 2341 424,900 
Corn** 418.49 3.84 249.35 59.58 n/a n/a 
Flaxseed* 20.26 0.19 11.9 58.74 2091 6200 
Soybean * 1130.64 10.37 781.34 69.11 2529 236,000 
Sunflower*** 60.39 0.55 6.53 10.81 1853 7400 
Total (pollination dependent 

crops) 
3631.78 33.3 1680 46.26 - - 

Other crops and natural 
landcover 

7273.22 66.7 2823 38.81 - - 

Total 10,905 - 4503 - - -  

* little pollination dependent 
** moderately pollination dependent 
*** highly pollination dependent. The calculated area is based on pollination model output and landcover distribution. Yield and production data is derived from 

(Statistics Canada 2022). 
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The sensitivity analysis was thus performed on a selected group of 10 
parameters, as presented in Table 2. These parameters were defined 
within a range of ±20% of their original values (sourced from Table 1), 
an approach informed by relevant literature and expert opinion. To 
generate diverse sets of parameter combinations, we employed the Latin 
Hypercube Sampling (LHS) method, resulting in a total of 40 combi
nations (see supplementary information 2). 

The appropriate sample size for sensitivity analysis depends on the 
complexity of the model and the number of input parameters being 
considered (Sheikholeslami and Razavi 2017). In general, a larger 
sample size provides a more accurate assessment of parameter sensi
tivity, but also requires more computational resources and time. How
ever, due to nature of our pollination model and computation time, we 
selected 40 samples with the LHS method to run the model in the sample 
areas (SI2). 

For the implementation of the LHS method, we used the pyDOE 
(Design of Experiments for Python; https://pythonhosted.org/pyDOE/) 
package and for variance-bases sensitivity analysis we used the SALib- 
Sensitivity Analysis Library in Python (Iwanaga, Usher, and Herman 
2022). LHS is a stratified random sampling method ensuring a uniform 
distribution of input combinations across the range of input parameters. 
This method requires several considerations, including the listing of the 
model’s parameters and their corresponding values, along with the 
identification of uncertain parameters (Gomero 2012). From our initial 
list of 19 parameters (based on Table 1), we filtered the most uncertain 
parameters, focusing particularly on those related to bee behavior, such 
as foraging distances and seasonal activity. We omitted the nesting 
ability of different nesting sites for the guilds of interest from the list of 
uncertain parameters. This decision was guided by the minimal differ
ences identified in Table 1 and corresponding literature regarding the 
different nesting sites for wild bee guilds in the study area. Table 2 
presents the list of key uncertain parameters and their defined range for 
sensitivity analysis. A preliminary correlation analysis conducted 

between input parameters revealed weak or non-existent correlations 
among input features for the selected parameters, as depicted in Fig. 3. 
However, these weak relationships could be influential in variance 
decompactions of model output when two or more input features 
interact together. 

Given the computational demands associated with running the 
model at a 30 m resolution with ARIES for the entire study area, we 
adopted a strategic approach to reduce computation time. We elected to 
operate the model across 40 distinct parameter combinations within 
selected sample areas from the study area. The initial step involved 
ranking the geographical limits of the study areas based on the diversity 
of land cover and crop types. We subsequently identified each unique 
type and partitioned these coordinates into clusters using the K-means 
algorithm. These clusters informed the definition of sample areas for 
executing the sensitivity analysis. We established a 3 km buffer around 
these areas, a distance that is roughly twice the foraging range of a 
bumblebee (α = 1.5 km). To further refine the selection, we applied the 
Shannon Diversity index to each of these sample areas. This measure 
quantified the diversity of land cover types within each area, facilitating 
an effective ranking system. Based on this ranking, we chose five areas 
for subsequent analysis: two areas with the highest diversity, two with 
the lowest, and one median (Fig. 4). Subsequent to running the model 40 
times, each with a different parameter combination, we extracted the 
raster values based on random points (n=20 in each landscape, yielding 
a total of 100 points). This approach allowed us to generate a compre
hensive yet manageable dataset for our sensitivity analysis, effectively 
balancing computational demands with the need for diverse and 
representative sample areas. 

2.4.1. Variance-based sensitivity analysis 
Variance-based sensitivity analysis quantifies the contribution of 

each input parameter to the output variance. This contribution can be 
from a single parameter or from interactions among two or more 

Fig. 3. Heatmap correlation of input parameters considered in the senstivity analysis.There is a weak correlation between some of input parameters and no rela
tionhsip in most of the time as shown in the heatmap. For example there is a mild negative correlation between summer activity in miningbees and bumblbees (r 
= -0.43). 

E. Pashanejad et al.                                                                                                                                                                                                                            

https://pythonhosted.org/pyDOE/


Ecological Modelling 484 (2023) 110452

7

parameters, leading to what is known as first-order and higher-order 
sensitivity indices, respectively (Pianosi et al. 2016). The Sobol sensi
tivity analysis technique (Sobol 1993) calculates these contributions, 
known as Sobol SI’s indices, by taking into account both the impact of 
individual parameters and the interactions between two or more pa
rameters. The Sobol method provides a robust framework for under
standing mathematical models and can handle non-linear and 
non-monotonic functions and relationships. 

The Sobol indices are essential in determining which parameters are 
most impactful and, therefore, should be the focus of further research 
and refinement. This form of sensitivity analysis is instrumental in 
determining how much the uncertainty in the output of a mathematical 
model or system can be attributed to different sources of uncertainty in 
its inputs. 

In the context of the Sobol method, a model is represented by a 
function, Y = f(X), where Y is the model output and X is the set of pa
rameters, denoted as X = (X1,X2,…,Xk). The Sobol method recommends 
decomposing this function, f, into summands of increasing dimension
ality (Pianosi et al. 2016). This approach simplifies complex models into 
more manageable and analyzable components, making it a popular tool 
in the modeling of complex environmental systems. 

Following the model function defined above, the first-order indices, 
or main effects, measure the direct contribution of individual input 
features to the model output variance. Essentially, by fixing a specific 
input feature, we can estimate the expected reduction in the output 
variance (Nossent, Elsen, and Bauwens 2011; Pianosi et al. 2016). 

SF
i =

VXi [Ex∼i (y|xi)]

V(y)
=

V(y) − VXi [EX∼i (y|xi)]

V(y)
(4)  

where:  

• SF
i is the first-order sensitivity index for the i-th input parameter. This 

index quantifies the proportion of the total output variance that is 
due to the i-th input factor alone.  

• E is the expected value,  
• V is the total variance or the output y  
• X∼i denotes all input factors except the i-th one. 

The total-order or total effect indices is another index introduced by 
(Homma and Saltelli 1996) to measure the contribution to the output 
variance caused by an input factor including both its first-order effects 
and its interaction with all the other factors known as higher-order in
teractions. While the first-order effect provides a valuable means of 
ranking the individual influence of each factor, particularly in scenarios 
where interaction effects are negligible or non-existent in their contri
bution to output variance, the Total-Order Index offers a more holistic 
view. It is particularly well-suited for preliminary screening purposes, as 
it provides a robust mechanism to identify influential and 
non-influential factors (Pianosi et al. 2016). Accordingly, the total-order 
index can be written as: 

ST
i =

Ex∼i [Vxi (y|x∼i)]

V(y)
= 1 −

Vx∼i [Exi (y|x∼i)]

V(y)
(5) 

Second-order indices or intermediate order can also be defined that is 
the measure of the contribution to the model variance caused by the 
interaction of two model inputs. 

Fig. 4. Spatial distribution and location of selected sample areas and random points for sensitivity analysis. Landscape diversity is calculated for each landscape 
based on Shannon landscape diversity(H). As shown in the figure sample areas 1 and 2 is a mixed landscape of cropland and forest types while sample area 3 is mostly 
dominated by forest types and grassland. Whereas sample area 4 and 5 is dominated by cropland with sample patches of forest. 
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2.4.2. Gaussian process model to interpolate the pollination model output 
Gaussian process regression (GPR) is a non-parametric Bayesian 

inference. This approach initially proposed in statistics by (O’Hagan 
1978) is also known as kriging in geostatistics. Essentially, Gaussian 
Processes (GPs) are a type of kernel method that uniquely provides a 
thorough, conditional statistical representation of the predicted vari
able. This ability is particularly useful in defining hyperparameters and 
establishing confidence intervals, contributing to more precise and 
interpretable model outcomes(Camps-Valls et al. 2016). A Gaussian 
process function can be defined as a stochastic process where each point, 
denoted by X, in the continuous domain is associated with a random 
variable, represented as f(x). The essential characteristic of this process 
is that the join distribution of a finite number of these variables p(f(x1), 
…,f(xn)) follows a Gaussian distribution: 

p(f |X) ∼ N(f |μ,K) (6)  

where f = (f(x1),…f(xn)), μ = (m(x1),…m(xn) and Kij = k(xixj). In this 
equation, the mean function m represents the prior mean of the Gaussian 
process. It is common to set the mean function to zero due to the flexi
bility of the Gaussian process which allows it to model the mean even 
when assigned an arbitrary beginning value (Schulz, Speekenbrink, and 
Krause 2018). 

Assuming we have the values of a noise-free function f at certain 
inputs x, we can transition a Gaussian Process (GP) from a prior state to a 
posterior one. This transition enables us to generate predictions for new 
inputs. By the nature of a GP, the joint distribution of observed values 
and predictive values adheres to a Gaussian distribution (Schulz et al. 
2018). This distribution can be partitioned as follows: 
(

f
f ∗
)

∼ N,

(

0
(

K K∗

K∗T K∗∗

))

(7)  

in which K∗ = k(X,X∗)and K∗∗ = k(X∗,X∗).

Given m training data points and n new observations (test data 
points), K is an m × m matrix, K∗ in an m × n matrix, and K∗∗ is an n ×n 
matrix. 

According to the properties of Gaussian distribution, the predictive 
distribution also known as posterior is defined as follows: 

p(f ∗|X∗,X, f ) ∼ N(f ∗|μ∗,Σ∗) (8)  

where μ∗ = K∗TK− 1f 

Σ∗ = K∗∗ − K∗T K − 1K∗ (9) 

Suppose we introduce noise into objective function, such that y = f +
ε, where the noise follows a normal distribution 

ε ∼ N
(

0, σ2
y I
)

(10)  

is independently and identically distributed. Under this condition, the 
posterior can then be depicted as: 

p(f ∗|X∗,X, y) ∼ N(y∗|μ∗,Σ∗) (11)  

where μ∗ = K∗TK− 1
y

− 1y 

Σ∗ = K∗∗ − K∗T K − 1
y K∗ (12)  

where ky = K+ σ2
y I 

Finally, to account for the noise σ into prediction, it is incorporated 
by adding it to the diagonal of the covariance matri. 

p(f ∗|X∗, X, y) ∼ N
(

y∗
⃒
⃒
⃒μ∗,Σ∗ + σ2

y I
)

(13) 

The subsequent steps provide a summary of the Gaussian Process 
Regression (GPR) implementation for training the model outputs:  

• Data preprocessing: before training the model, a consistent scale of 
input features is required. Since all the input parameters were be
tween the range of 0–1 except the foraging distances of bee guilds, 
we normalized this parameter using the Min/Max scaler scale. This 
transformation is given by: 

X′ =
(X − Xmin)

(Xmax− Xmin)
(14)    

• Kernel selection: There are infinite numbers of kernel functions that 
can be selected. To identify the optimal kernel for the Gaussian 
process regression model, which is critical for accurate and robust 
predictions, we considered an array of kernels, including RBF, 
Matern, Rational Quadratic, and White Kernel, both individually and 
in combination, thereby exploring the potential advantages of com
posite kernels. To ensure the model was not limited by local minima 
in the optimization process, we implemented multiple restarts for the 
optimizer. We assessed the performance of each kernel function 
based on Normalized Mean Squared Erorr (NMSE) between pre
dicted and actual values. The lowest NMSE was selected as best 
kernel.  

• Hyperparameter optimization: The hyperparameter optimization 
is performed by comparing the performance of the several different 
kernels on the given dataset.  

• - Kernel selection criterion and model performance evaluation: 
The optimal kernel was chosen based on its performance, as 
measured by the smallest Normalized Mean Squared Error (NMSE) 
on the test set as a widely accepted measure of predictive perfor
mance. The NMSE is defined as: 

NMSE =
1
n

∑n

i=1

(
ypred,i − ytrue,i

)2

y2
true,i

(15)  

where n is the number of samples, ypred,i is the predicted value for the 
i-th sample, and ytrue,i is the true value for the i-th sample. 

• Model training and validation: after preprocessing and kernel se
lection, the dataset is trained with the optimized kernel. Model 
performance is evaluated using the test set and quantified in terms of 
NMSE. To ensure the model was not limited by local minima during 
optimization, we implemented multiple restarts. 

3. Results 

3.1. Landscape suitability: floral resource availability (seasonal 
variation) and nesting suitability (nesting sites) 

Fig. 5 shows seasonal variation in flowering availability (panel A) 
and different nesting types (panel B) for wild bees in the study area. A 
value of 0 means that a given cover type has no capacity to provide floral 
resources or nesting sites for wild bees, while 1 refers to the highest 
capacity of a specific cover type to provide floral resources and nesting 
habitat. Fig. 5 shows consistent associations between land cover types, 
floral resources, and suitable nesting sites. There are notable differences 
in floral resources values for different forest classes, grassland, wetlands, 
and some crop types such as sunflower, canola, and flaxseed (Supple
mentary Materials, Table 2). High-value floral resources and nesting 
habitat are typically distributed in natural and semi-natural patches 
among croplands. In addition, flowering differs by season and landcover 
type. The model addressed this seasonal variation using a look-up table 
for different seasons. For example, the yellow color in the summer floral 
resource map indicates the flowering period of different crops in the 
landscape, which disappears in other seasons (panel A Fig. 5). 

Pollinator Abundance (guild source maps) and Pollination Supply 
The resulting total pollinator abundance and pollination supply for 

each guild, shown in Fig. 6, reflects guild abundance and pollination 
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supply areas in the landscape. Fig. 6 shows how guilds vary spatially 
across landscape with different flight distances for foraging and nesting 
requirements. 

Due to the higher availability of floral resources and nesting habitat 
in natural areas, greater pollinator abundance is estimated in these 
areas. However, inside the agriculture matrixes, high abundance values 

are present, yet limited to natural patches and small fragmented habitats 
such as hedgerows and roadside vegetation that connect nesting sites 
and foraging destinations. As expected, the abundance of pollinators in 
the surrounding cropland is considerably lower than in semi-natural 
areas. 

In addition to pollination potential for each guild, we also considered 

Fig. 5. Seasonal variation in floral resource availability (panel A) and landscape suitability of different nesting types (panel B). A: Seasonal floral resource avail
ability. B: Nest site suitability. 

Fig. 6. Pollinator abundance and pollination supply model output of each guild. Panel A: Bumblebees (foraging distance = 1500 m), Panel B: Mining bees(foraging 
distance = 400 m) and Panel C: Sweat bees (foraging =200 m). Panel D, the crop type and landcover map, is a key input to the model. The model reflects the 
significance of landscape structure in providing floral resources, suitable nesting habitat, and pollination service supply areas. 
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the relative importance of guilds to model their proportional represen
tation in the final pollination service map. Pollination potential supply 
in this model is equivalent to visitation probabilities of guilds in the 
landscape. Fig. 7 (Panel A) illustrates the predicted pollination service 
potential (the weighted sum of visitation probability for all target bee 
guilds). Overall, visitation probabilities by guilds tend to decrease with 
increasing cropland cover (Fig. 6 illustrates the landscape structure and 
pollination potential for each guild). In other words, pollination po
tential is significantly associated with natural and semi-natural patches 
in the landscape. Recent studies have found a strong relationship be
tween enhanced bee abundance and semi-natural habitats with 
increased crop diversity (e.g., Raderschall et al. 2021). This is due to the 
availability of prolonged flowering periods in matrices with mixed crops 
and semi-natural habitats. 

The total pollination supply classification depicts that almost 14.67% 
of the study area is spotted as pollination hotspots, while 41% of this 
landscape lacks potential wild pollination service, mainly inside crop
land (Fig. 7, panel C). We also conducted a spatial autocorrelation 
analysis using the Moran’s I index in ArcGIS to test the likelihood of 
clustering patterns of total guild pollination supply classes. The result 
shows that the clustering is not random and supports the hypothesis of 
an association between landscape structure and pollination service 

capacity (Moran’s Index: 0.517, z-score: 22.595, p-value: 0.00). 
Fig. 8 illustrates the spatial distribution of pollination-dependent 

crops in the identified pollination deficit clusters, and Table 3 pro
vides an in-depth comparison of the area these crops occupy in the 
landscape. As discussed in the study area section, canola is the most 
important pollination-dependent crop in this landscape. Canola covers 
18.36% of the study area (2002 km2) and according to our model, 
31.51% of canola farmlands are located in the pollination deficit area, 
meaning these farms do not meet the demand by wild pollination. While 
corn field spatial distribution is about 3.84%, this cover type suffers 
from pollination deficit as well (almost 59.85% of the total corn area is 
located in pollination deficit areas). Soybean is also a dominant crop 
type (with 236 thousand metric tonnes production in 2020) in the 
landscape with a low insect pollination dependency rate (Robinson, 
Nowofrodski, and Morse 1989). Soybean farm fields occupy 10.37% 
(1130.64 km2) of the study area and 781.34 km2 (69.11%) of this cover 
type lacks wild pollination service on the farm. Among the 
pollination-dependent crop types, canola and soybean rank the first and 
second top significant crop by production in this landscape (Table 3). 

Fig. 7. Panel A: Total pollination potential supply. The 
color intensity represents the level of the potential 
pollination supply. Panel B: distribution of potential 
pollination supply area among different classes. Panel 
C: Pollination hotspots and pollination deficit areas. 
Medium potential is mainly identified as edge areas of 
natural habitat such as forest edges and this means 
demand for pollination is met in these patches. Polli
nation deficit areas are mainly identified inside larger 
patches of cropland, while hotspots are associated with 
natural patches.   

E. Pashanejad et al.                                                                                                                                                                                                                            



Ecological Modelling 484 (2023) 110452

11

3.2. Guild comparison 

The relative values of floral resources, pollinator abundance, and 
pollination supply for a selected part of the study area are shown in 
Fig. 9. This figure reflects how guilds with different foraging ranges and 
resource requirements are distributed in the landscape. Floral avail
ability at the landscape scale, for example, is of special importance for 
bumblebees, as they are generalist pollinators that collect pollen in a 
broader range of floral resources (Fernandes et al. 2020). In comparison, 
solitary bees (such as sweat bees and mining bees) rely on a small 
portion of the nearby landscape, which can be at farm-scale if suitable 
on-farm habitats exist. Hence, the presence of solitary bees may be 
strongly related to native floral resources and habitat structure. 

The availability of floral resources and seasonal variability of the 
flowering period within each guild predicts the spatial pattern of bee 
habitat. For example, guilds with smaller foraging ranges (200 m like 
sweat bees) will be less likely to encounter all bloom stages, whereas 
guilds with longer flight distance (1500 m like bumblebees) have access 
to floral resources over a larger portion of the landscape (Fig. 9, floral 
availability of different guilds). However, such patterns do not neces
sarily reflect the total bee abundance in the landscape or the actual 
pollination supply since other factors such as habitat structure and 
rewarding floral resource patches (Lihoreau, Chittka, and Raine 2011) 
could make actual bee abundance patterns more complex. In areas 
where the distribution of different guilds overlaps (e.g., in areas of high 
floral resources values), the landscape may experience a spillover of 
pollination supply in some areas; by contrast pollination deficits due to 
bee abundance imbalance in other areas of the landscape. This is not an 
actual indication of bee overabundance or bee scarcity in the landscape 
but rather the influence of landscape structure that may cause pollina
tion hotspots and pollination deficient areas. We can therefore assume 
that the model effectively quantifies spatial heterogeneity of cropland 
and natural habitats; increasing this heterogeneity would be expected to 

increase pollination service provision. 

3.3. Sensitivity analysis 

Scatter plots of model outputs against each input feature based on 
sample areas are shown in Fig. 10. In Fig. 10, each facet represents a 
parameter space on the x-axis, and the model output (visit score of bee 
guilds, the visit score is used as a proxy for pollination service supply), 
on the y-axis. In this context, a high visit score signifies areas where 
pollination services are abundant, whereas a lower score suggests less 
supply. Spatial replicates extend this analysis across multiple areas 
within the study site, revealing the impact of different landscapes on 
pollination. Variations in parameters are shown by the spread of data 
points, informing on model sensitivity to parameter changes. This in
tegrated approach provides a thorough understanding of the link be
tween landscape structure and pollination service. 

Overall, Fig. 10 reveals little to no correlation between input features 
and model outputs. The only strong negative correlation is found in 
sample area 2 (Fig. 10.b, a mixed landscape of croplands and forest) for 
sweat bees foraging distance. These plots depict that high values of 
pollination supply (visit score) occur when foraging distances are be
tween 100 to 140 m for sweat bees. A similar pattern with weak cor
relation in the same landscape is also found for mining bees foraging 
distance with an exception that visit score values increase when the 
foraging distance of mining bees increases. Based on the visual inspec
tion of the scatter plots, overall no single parameter significantly or 
consistently affects the model outputs. However, landscape composition 
does seem to play a role in the model’s behavior. Even so, model outputs 
remain relatively consistent across different parameter value combina
tions. Further, for any given sampling point in the landscape, the rank 
related to various parameter combination were overwhelmingly 
consistent. This indicates that the resulting maps produced by the model 
would have (nearly) identical patterns, regardless of the specific 

Fig. 8. Spatial distribution of pollination-dependent crops in the identified pollination deficit areas.  
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parameter combination used. In general, the results based on variance of 
model parameters show our results are quite stable to various parameter 
combinations. To further explore the role of input features in the model 
outputs we used a variance decomposition approach (see section below; 
Sobol sensitivity indices). 

3.3.1. Variance-based sensitivity analysis by fitting a Gaussian process 
model 

We applied a 100-fold shuffle split technique to the limited number 
of models runs (40). This approach randomizes the dataset and gener
ates multiple train-test splits, enabling a evaluation of the model’s 
predictive performance. The Normalized Mean Squared Error (NMSE) is 
used as an evaluation metric to assess the performance of Gaussian 
process regression model. The average NMSE on both training and test 
sets represents the mean of the squared differences between the pre
dicted and actual values, adjusted by the scale of the actual values. A 
lower value suggests better performance of the model on the data. The 
normalized means squared error for both train and test set of the data is 
calculated in each shuffle and the average is reported in Fig. 11 which 
demonstrates the capacity of the model to capture underlying patterns 
and relationships in the data. In addition to the overall performance of 
the model the CDF plots of predicted versus actual values against some 
selective parameters is provided in SI1 (Supplementary information1, 
Fig. 1). 

3.3.2. Sobol sensitivity indices 
At this stage, we have developed a functional surrogate model, which 

is a simplified representation of the complex pollination model previ
ously discussed. This surrogate model allows us to predict new outputs 
of the pollination model for any new set of input parameters efficiently. 
Post-training, we conducted a global sensitivity analysis using Gaussian 
process model. According to the Sobol sensitivity analysis, first-order 
indices (S1) represent the main effect of each input feature on the 
model output. Indeed, S1 is an indication of uncertainty of model output 
that is attributed to an individual input feature. Total-order (ST) effect 
on the other hand, accounts for the effect of each parameter on the 
output, including both its individual effect and its interactions with all 
other parameters. Based on the first-order and total effect results in 
Table 4, the foraging distance input features of bumblebees and sweat 
bees displayed a negative first-order effect. This implies that these two 
parameters do not contribute to the model output individually but their 
relative impact is substantial when interacting with other parameters. 
Interestingly, these negative valued parameters contributed positively to 
the overall model output variance when interactions effects were 
considered (ST). For bumblebees, the activity during different seasons 
illustrated positive first-order and total indices. This indicates the sea
sonal activity of bumblebees is a significant driver of the model output 
variance. A similar pattern was observed for mining bees and sweat bees 
(Fig. 12). These results suggest that seasonal activities of all guilds have 
considerable influence on the model output variance. 

A parameter that demonstrates a high ST value and a low S1 value 
suggests its primary impact on the output is derived through its in
teractions with other parameters, with minimal or no individual effect. 
Although Sobol indices theoretically range between 0 and 1, it is 

Fig. 9. Guild floral availability, pollinator abundance and pollination supply in a selected sample area of the landscape. The first row is sweat bees, the second is 
mining bees, and the third is bumblebees. Accordingly, guild foraging ranges are included in floral availability maps and the total pollination supply map (upper right 
corner). A comparison between these maps highlights the role of flight distance in the spatial representation of pollination supply. There is a relatively higher 
abundance of solitary bees (sweat bees and mining bees) than bumblebees. Indeed, bumblebees have a larger neighbourhood matrix to forage and this leads to a 
relatively large spatial coverage of this guild over landscape. However, despite the higher abundance of other guilds, their pollination service is limited to their 
foraging distance vicinity. 
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Fig. 10. Scatter plot of model outputs againts input parameters for each smaple areas. a. sample area 1 (polygon FID0), an agricultral landscape with low forest 
density. . b. sample area 2 (polygon FID1), a mixed agricultral and forest landscape.. c. in sample area 3 (polygon FID2), a forest dominated landscape with grassland. 
d. sample area 4 (polygon FID 3), an agricultural landscape with low patches of forest. e. sample areas 5 (polygon FID4), an agricultural landscape with low patches 
of forest. 
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possible to observe negative values in certain situations when the sample 
size is not enough. 

4. Discussion 

The framework developed in this study to represent the complexities 
of pollination service provisioning by different guilds of wild bees pro
vides an application of a holistic spatial dynamic model within the 
ARIES integrated and spatially explicit modelling framework (Gimenez- 
Garcia et al. in review). Our approach allows assessment of pollination 
service provision to simultaneously inform decision-making on 
ecosystem management and stimulate conservation strategies for native 
bee species and their habitat. The importance of wild bee species for 
crop pollination has been addressed in previous research and can be 
beneficial on an individual farm basis (Lonsdorf, Koh, and Ricketts 
2020). While some have considered bumblebees to be the most critical 
wild pollinators (Cameron et al. 2011; Colla et al. 2012) for crop polli
nation, our mapping results showed that small and medium-sized bee 
species (sweat bees and mining bees) with lower foraging ranges (less 
than 500 m) could help pollination service at the local farm scale, 
assuming adequate habitat is located close enough to crop fields. Our 
results benefit landscape managers and farmers to identify pollination 
service potential by wild bees. Accordingly, this will also provide sup
portive actions for wild bee conservation and their habitat at the farm 

Fig. 10. (continued). 

Fig. 11. Cumulative Distribution Function (CDF) plot of normalized mean 
squared errors for both training and testing sets. The plot demonstrates that the 
average NMSE values for both sets are negligible, indicating a well-fitted model 
to the dataset. 
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scale. 
Our results show that understanding how semi-natural landscape 

diversity promotes bee abundance in agricultural landscapes is essential 
(high and very high classes in Fig. 7, panel A near cropland). Previous 
research indicates that agricultural management practices, especially 
high diversity mixed crops with semi-natural patches, can provide 
abundant floral resources (Martins et al. 2018) and essential nesting 
habitat for native bees. However, to enhance the pollination service 
supply in the landscape, we also need to consider the capacity of small 
habitats (Rahimi, Barghjelveh, and Dong 2021). This highlights the role 
of habitat structure and habitat quality in pollination mapping practice. 

Pollination-dependent crops (canola, corn, flaxseed, soybean, and 
sunflower) cover 33.3% (3631.78 km2) of the landscape area (Table 3). 
Our model output delineated the pollination hotspots and deficit areas, 
and we found that 46.26% (1680 km2) of pollination-dependent crop 
areas encountered wild pollination deficit (considering all guilds). This 

highlights the value of pollination flowing to agricultural landscapes 
and the necessity of replacing it with managed honeybees. However, 
studies have shown that beekeeping in farmlands negatively affects 
plant-pollinator networks (Hung et al. 2019; Huryn 1997). For example 
(Valido, Rodríguez-Rodríguez, and Jordano 2019) found that estab
lishing high-density beehives on agricultural landscapes reduces the 
reproductivity of native plants, which are highly visited by managed 
honeybees. We conclude that preserving solitary bees and wild bees 
generally on farms could be a viable alternative to improve pollination 
flow to farmland and accordingly enhance crop yield and surrounding 
native plant communities. 

Our modelling finds that landscape structure and guild behavior are 
associated with pollination hotspots and deficit areas. Landscape 
composition is essential to support habitat and provide sufficient floral 
resources for pollinators. Recent research argues that landscape 
configuration is critical in the most rewarding foraging habitat patches. 
For example, a study of Bombus terrestris (Maurer et al. 2020) in 
managed vineyards found that foraging behavior varied based on 
habitat fragmentation. In addition, a recent study (Clake, Rogers, and 
Galpern 2022) found that positive effects of habitat fragmentation could 
predict bumblebee abundance more accurately than relying on habitat 
amount (landscape composition as a proxy to indicate bee abundance). 
There is evidence in the literature that even small patches provide 
supporting habitat for some bee guilds (Kremen et al. 2004). Therefore, 
mapping complexities of pollination at a fine spatial grain requires 
taking landscape configuration into account and not just relying on total 
landcover type amounts in the landscape. However, a full exploration of 
fragmentation effects on habitat patches in the pollination mapping 
process is beyond the scope of this study. 

4.1. Model evaluation and limitation 

The mechanistic pollination model applied in this paper within the 
ARIES framework has two significant advances. First, the mechanistic 
perspective of this model allows us to characterize the expected 
behavior of different pollinator guilds, such as considering foraging 
ranges of different native bees, flight activity in different seasons, and 
guild nesting ability in different habitats. An earlier pollination model in 
the ARIES repository developed by (Martínez-López et al. 2019) lacks 
some of the above-mentioned features of the Lonsdorf base model, 
which have more recently been added by Gimenez-Garcia et al. (in re
view). Our approach demonstrates how to account for multiple guilds 

Table 4 
Frist-order and total effect senstitivity inidcies obtianed with N = 3072 for the 
key pollination parameters.  

Input parameters S1 S1 CI ST ST CI 

Bumblebees foraging 
distance 

-0.120676* 0.003691 0.251855 0.001466 

Mining bees foraging 
distance 

0.094865 0.003640 0.343937 0.002405 

Sweat bees foraging 
distance 

-0.023717 * 0.002271 0.228140 0.001825 

Bumblebees spring activity 0.200225 0.003792 0.473447 0.003113 
Bumblebees summer 

activity 
0.135755 0.004403 0.474305 0.003195 

Bumblebees fall activity 0.239663 0.003811 0.627181 0.003095 
Mining bees spring activity 0.281127 0.003887 0.506383 0.002624 
Mining bees summer 

activity 
0.377566 0.003484 0.608468 0.002848 

Sweat bees spring activity 0.399421 0.003874 0.675718 0.003654 
Sweat bees summer activity 0.371500 0.003719 0.624239 0.003252 

*The negative values in the table are attributed to numerical inaccuracies in the 
Sobol estimations. It is common practice to interpret such values as zero, 
particularly for insignificant (non-influential) factors in the model output 
(Wang et al. 2020). These numerical errors can be minimized by enhancing the 
sample size. For this analysis, we initiated our model evaluation at a sample size 
of 1024, incrementing it by 1000 until we reached 14,336. Despite employing a 
large sample size for model evaluation, exceeding 100,000 (N= 128,000), we 
continued to encounter negative values. This suggests that the sensitivity indices 
for the less significant parameters failed to achieve ideal convergence. 

Fig. 12. Sensitivity insdices versus input parameters. The first order index and total effect index are represented by S1 and ST, respectively.  
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with complex behavior since pollinators do not have uniform behavior 
and resource needs. Our paper and the recent work it builds from 
(Gimenez-Garcia et al. in review) improve conceptual coherence of the 
Lonsdorf pollination base model that has been scattered in the literature 
and allows us to build a more complex and dynamic pollination model 
within ARIES. 

Second, our result highlights the significance of pollination supply by 
wild bee species and the ecological implication of native bees inside the 
cropland matrix. As shown in Fig. 9, the scale that pollinators fly is 
critical, and guilds have a different response to landscape composition, 
meaning in the absence of longer-distance pollinators like bumblebees, 
other guilds can provide pollination service at the smaller farm scale. In 
addition, identifying crop types and their attractiveness to bee species 
could be a synergistic management action to enhance bee abundance in 
the landscape. Studies (e.g., Schulp, Lautenbach, and Verburg 2014) 
have shown that the presence of wild bees is correlated with higher 
visitation rates to certain crop types. For example, sweat bees are 
frequent and important pollinators for wildflowers and sunflowers 
(Mallinger et al. 2019). 

In our model, we considered the biotic influences on pollination 
service. However, abiotic factors can potentially improve pollination 
mapping practice. Previous studies have shown that in some cases, semi- 
natural areas with abiotic conditions adjacent to agricultural landscapes 
(e.g., roadsides, hedgerows and utility corridors) provide pollinator- 
friendly habitat. An example of abiotic factors in the pollination 
model is the ESTIMAP model (Zulian, Maes, and Paracchini 2013). This 
study added abiotic components into the model, such as the proximity of 
roadsides, and other biotic factors such as forest edges and bioclimatic 
factors (the latter is also included in Martínez-López et al. (2019). In 
addition, pollination is an inherently complex ecological process, sha
ped by non-linear interactions between plants and their pollinators. 
These interactions can be affected by various landscape processes, 
including habitat fragmentation, land use change, and geomorphic 
features such as the configuration of drainage networks. Apart from the 
factors we considered, other spatial and environmental features signif
icantly impact model outputs. For instance, a drainage network can 
shape the distribution and movement of organisms and nutrients within 
an ecosystem, thereby affecting local climate conditions, species distri
bution, and population dynamics (Fantinato et al. 2018; Rudi, Bailly, 
and Vinatier 2018). Further studies are needed to augment our existing 
pollination framework with abiotic factors, management interventions 
such as pesticide effects (Douglas et al. 2021), and human-induced air 
pollutants impacts (Ryalls et al. 2022) on pollination mapping. The 
integration of both biotic and abiotic influences, alongside other spatial 
and environmental factors, offer a more nuanced understanding of 
pollination service. 

The application of variance-based global sensitivity analysis pro
vides critical insights into the relative importance of different input 
parameters within our pollination model. The total-order indices (ST) 
for all factors are substantial and, in several instances, exceed 0.5, spe
cifically the seasonal activities of all guilds. Interestingly, we observed 
negative first-order indices in the Sobol analysis, although such indices, 
lying outside the interval [0,1], can make interpretation more chal
lenging, they can provide valuable insights, as discussed in previous 
studies like (Esward et al. 2010). Notably, the high sensitivity indices 
associated with the spring and summer activities of all guilds underscore 
the importance of seasonal variation in floral resources, a key aspect 
represented in our pollination model. Furthermore, the analysis reveals 
the significance of higher-order interactions, which capture complex 
dependencies. The influence of a variable might be accentuated or 
mitigated based on its interactions with other variables, as pointed out 
by Nossent et al. (2011). These interactions play a critical role in the 
Sobol sensitivity analysis, where first-order indices are often employed 
for factor ranking when interaction effects contribute insignificantly to 
the output variance. 

The presence of negative first-order indices in our variance-based 

sensitivity analysis may initially seem counterintuitive. However, 
within complex ecological models such as the pollination model, these 
negative indices could potentially indicate the presence of non-linear 
interactions between input parameters. Previous studies (Qian and 
Mahdi 2020; Sarrazin, Pianosi, and Wagener 2016; Wang et al. 2020) 
demonstrated that negative first-order effects may appear when indices 
are estimated with finite, and sometimes small, samples of model eval
uation, pointing to potential numerical errors in the Sobol indices. While 
it may be interpreted as the parameters being non-influential and 
treating their value to be zero, this seems not the case in our complex 
pollination model as the total effect of parameters are relatively signif
icant. Instead, this suggests that output depicts a nonmonotonic rela
tionship as shown in scatter plots in Fig. 11. Therefore, there is no single 
parameter that significantly influence model outputs, but the in
teractions among parameters are more influential. 

Complex ecological systems such as the pollination model in this 
study, are influenced by a number of factors including floral resources, 
foraging distance, nesting suitability, nesting ability, seasonal variations 
and ecological functionality of different bee guilds. All these factors 
interact in complex ways to shape the pollination potential of a land
scape and could act to stabilize the ecological system under varying 
conditions. Floral resources and nesting suitability are fundamental to 
the survival and productivity of pollinators. When floral resources and 
nesting suitability are high, it is generally expected that pollinator 
abundance will increase (Affek et al. 2021; Fowler, Rotheray, and 
Goulson 2016). However, when floral resources and nesting suitability 
in a landscape is low, pollinator might still be able to sustain themselves, 
albeit at reduced level, due to their ability to forage over longer dis
tances (Rands and Whitney 2011) or utilize alternative nesting sites. 
Foraging distances of bee guilds is another crucial variable in the model 
even if the sensitivity analysis of first-order effects demonstrated 
non-influential effects for two bee guilds. Bees with larger foraging 
distances can access floral resource farther away from their nesting sites, 
which can help maintain pollination service even when local floral re
sources are scarce. This ability to forage larger distances and adapt to 
fluctuations in floral resources availability can enhance the stability of 
the system. The model also accounts for seasonal variation in floral 
resource availability. Seasonality offers varying level of resources, and 
different bees might have varying adaptabilities and preferences to these 
changes. For example, bumblebees are the only active wild bees during 
the fall among the guilds under study. Thus, the ability of different bee 
guilds to shift their activity patterns in response to these seasonal vari
ations can contribute to the stability of the pollination system. These 
stability factors might be particularly important in the face of distur
bances or environmental changes, helping to maintain pollination ser
vice provisioning and flowing in the landscape. 

At a large landscape scale, considering cropland as pollination 
coldspots and semi-natural habitats as hotspots may be an over
simplification in part due to using classification methods, landscape 
composition and the aggregation algorithm in the model. Previous 
studies such as (Bagstad et al. 2017) found that using different clustering 
methods for ES hot/coldspots delineation produced different spatial 
patterns. For example, area-based and quantile classification use high 
and low values for clustering spatial patterns. We used the neighbour
hood of each pixel to compute the seasonal floral resource maps for each 
guild according to their foraging distance. However, pollinators are 
central place foragers (Olsson, Brown, and Helf 2008), meaning that 
they can accurately distinguish rewarding patches from non-rewarding 
ones, which influences their nest-site selection decisions (Fernandes 
et al. 2020). This interplay between landscape pattern and complex 
pollinator behavior is an important one; although our current model 
lacks such complexity, future modeling efforts within ARIES could fill 
this gap. Hence, integrating more complex foraging mechanisms may 
provide added value for the existing modelling framework. 

A final drawback of our approach, which is common to pollination 
modeling, is the lack of the model validation process, which requires 
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further effort, such as field observation and experimental analysis in the 
landscape. One way to address this gap is to engage with the species 
distribution model and use species occurrence data from the Global 
Biodiversity Information Facility(https://www.gbif.org/). Recently, an 
important study by (Perennes et al. 2021) has developed a robust 
pollination mapping approach using pollinator species distribution 
predictions and knowledge on bee species life history. 

5. Conclusion 

There are currently several different spatial-based ES mapping tools 
available. Different models are developed for a specific context, use 
different approaches, and produce different output metrics (Bagstad 
et al. 2018), while ARIES is designed to integrate multiple model types 
of varying complexity, using artificial intelligence to guide model se
lection. As more varied models become available in ARIES, the system 
will have greater flexibility to answer more diverse ES modeling prob
lems (Martínez-López et al. 2019). The mechanistic pollination model 
applied within the ARIES framework highlights the significance of 
pollination supply by various wild bee guilds and the ecological impli
cation of native bees inside the cropland matrix in the Canadian prairies. 
A global sensitivity analysis based on variance decomposition on key 
input parameters showed that while there is no single parameter influ
encing model variance, all parameters are representative of complex 
ecological model of pollination service by wild bees. Even though the 
total effect of all parameters is fairly significant, seasonal activity across 
all guilds was identified as the key driving factor within our pollination 
model. As native bee guilds in agricultural landscapes could be a viable 
alternative for crop pollination and management purposes, these results 
could further support wild bee conservation actions in agriculture ma
trixes in the Canadian prairies. 
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